Definitions:

- Circle: is the set of all points in a plane that lie a fixed distance from a fixed point. The fixed distance is called the radius and the fixed point is called the center.

Important Properties:

- Equation of a circle: An equation of the circle with center (h, k) and radius r is given by

$$
(x-h)^{2}+(y-k)^{2}=r^{2}
$$

This is called the standard form for a circle.

- Note to find the equation of a circle you need two items: the center and the radius.

Steps to verify the equation of a circle by completing the square:

1. Isolate the constant on one side of the equation and group all x terms together and group all y terms together.
2. Take one-half the coefficient of x and square it. Also, take one-half the coefficient of y and square it. Namely,

$$
\left(\frac{1}{2} \cdot \text { coeff of } x\right)^{2} \quad \text { and } \quad\left(\frac{1}{2} \cdot \text { coeff of } y\right)^{2}
$$

3. Add the result of each part of step 2 to both sides of the equation.
4. Factor as two perfect squares.

PROBLEMS

Show that the equation represents a circle, and find the center and radius of the circle.

1. $x^{2}+y^{2}-2 x+6 y+3=0$

To show that this is the equation of a circle we will need to put it in standard form. To do this we will need to complete the square on both the x and y terms.

$$
\begin{aligned}
x^{2}+y^{2}-2 x+6 y+3 & =0 \\
x^{2}-2 x+\quad+y^{2}+6 y+ & =-3 \\
\left(\frac{1}{2} \cdot-2\right)^{2}=(-1)^{2} & =1 \\
\left(\frac{1}{2} \cdot 6\right)^{2}=(3)^{2} & =9 \\
x^{2}-2 x+1+y^{2}+6 y+9 & =-3+1+9 \\
(x-1)^{2}+(y+3)^{2} & =7
\end{aligned}
$$

This is the standard form for a circle. The center is $(1,-3)$ and the radius is

$$
\begin{aligned}
r^{2} & =7 \\
\sqrt{r^{2}} & =\sqrt{7} \\
r & =\sqrt{7}
\end{aligned}
$$

$$
(x-1)^{2}+(y+3)^{2}=7
$$

$$
\text { Center }=(1,-3), \quad r=\sqrt{7}
$$

2. $x^{2}+y^{2}-4 x+12 y-7=0$

$$
\begin{aligned}
x^{2}+y^{2}-4 x+12 y-7 & =0 \\
x^{2}-4 x+\quad+y^{2}+12 y+ & =7 \\
\left(\frac{1}{2} \cdot-4\right)^{2}=(-2)^{2} & =4 \\
\left(\frac{1}{2} \cdot 12\right)^{2}=(6)^{2} & =36 \\
x^{2}-4 x+4+y^{2}+12 y+36 & =7+4+36 \\
(x-2)^{2}+(y+6)^{2} & =47
\end{aligned}
$$

This is the standard form for a circle. The center is $(2,-6)$ and the radius is

$$
\begin{gathered}
r^{2}=47 \\
\sqrt{r^{2}}=\sqrt{47} \\
r=\sqrt{47} \\
(x-2)^{2}+(y+6)^{2}=47 \\
\text { Center }=(2,-6), \quad r=\sqrt{47} \\
\hline
\end{gathered}
$$

3. $x^{2}+y^{2}+8 x-2=0$

For this problem notice that we only need to complete the square on the x variable since the y^{2} is already a perfect square.

$$
\begin{aligned}
x^{2}+y^{2}+8 x-2 & =0 \\
x^{2}+8 x++y^{2} & =2 \\
\left(\frac{1}{2} \cdot 8\right)^{2}=(4)^{2} & =16 \\
x^{2}+8 x+16+y^{2} & =2+16 \\
(x+4)^{2}+y^{2} & =18
\end{aligned}
$$

This is the standard form for a circle. The center is $(-4,0)$ and the radius is

$$
\begin{gathered}
r^{2}=18 \\
\sqrt{r^{2}}=\sqrt{18} \\
r=\sqrt{18} \\
r=3 \sqrt{2} \\
(x+4)^{2}+y^{2}=18 \\
\text { Center }=(-4,0), \quad r=3 \sqrt{2} \\
\hline
\end{gathered}
$$

4. $x^{2}+y^{2}-3 x-10 y-13=0$

$$
\begin{aligned}
x^{2}+y^{2}-3 x-10 y-13 & =0 \\
x^{2}-3 x+\quad+y^{2}-10 y+\quad & =13 \\
\left(\frac{1}{2} \cdot-3\right)^{2}=\left(-\frac{3}{2}\right)^{2} & =\frac{9}{4} \\
\left(\frac{1}{2} \cdot-10\right)^{2}=(-5)^{2} & =25 \\
x^{2}-3 x+\frac{9}{4}+y^{2}-10 y+25 & =13+\frac{9}{4}+25 \\
\left(x-\frac{3}{2}\right)^{2}+(y-5)^{2} & =\frac{161}{4}
\end{aligned}
$$

This is the standard form for a circle. The center is $\left(\frac{3}{2}, 5\right)$ and the radius is

$$
\begin{aligned}
r^{2} & =\frac{161}{4} \\
\sqrt{r^{2}} & =\sqrt{\frac{161}{4}} \\
r & =\frac{\sqrt{161}}{2}
\end{aligned}
$$

$$
\left(x-\frac{3}{2}\right)^{2}+(y-5)^{2}=\frac{161}{4}
$$

$$
\text { Center }=\left(\frac{3}{2}, 5\right), \quad r=\frac{\sqrt{161}}{2}
$$

5. $x^{2}+y^{2}+9 x-3 y+11=0$

$$
\begin{aligned}
x^{2}+y^{2}+9 x-3 y+11 & =0 \\
x^{2}+9 x++y^{2}-3 y+ & =-11 \\
\left(\frac{1}{2} \cdot 9\right)^{2}=\left(\frac{9}{2}\right)^{2} & =\frac{81}{4} \\
\left(\frac{1}{2} \cdot-3\right)^{2}=\left(-\frac{3}{2}\right)^{2} & =\frac{9}{4} \\
x^{2}+9 x+\frac{81}{4}+y^{2}-3 y+\frac{9}{4} & =-11+\frac{81}{4}+\frac{9}{4} \\
\left(x+\frac{9}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2} & =\frac{46}{4}
\end{aligned}
$$

This is the standard form for a circle. The center is $\left(-\frac{9}{2}, \frac{3}{2}\right)$ and the radius is found by

$$
\begin{gathered}
r^{2}=\frac{46}{4} \\
\sqrt{r^{2}}=\sqrt{\frac{46}{4}} \\
r=\frac{\sqrt{46}}{2} \\
\left(x+\frac{9}{2}\right)^{2}+\left(y-\frac{3}{2}\right)^{2}=\frac{46}{4} \\
\text { Center }=\left(-\frac{9}{2}, \frac{3}{2}\right), \quad r=\frac{\sqrt{46}}{2}
\end{gathered}
$$

