Definition:

- Composition function: Given two functions f and g, the composition function $f \circ g$ is defined by

$$
(f \circ g)(x)=f(g(x))
$$

In other words, given a number x, we first apply g to it and then we apply f to the result. Here, f is the outside function and g is the inside function.

Important Properties:

- Let c be any constant. There are two ways to find $(f \circ g)(c)$. You could first evaluate $g(c)$ and then evaluate f at the result. Or you could first find $(f \circ g)(x)$ and then evaluate the resulting function at c.
- To find $(f \circ g)(x)$, remember to substitute the value $g(x)$ into every variable that occurs in f.
- The order of the functions is important. In general,

$$
(f \circ g)(x) \neq(g \circ f)(x)
$$

- Other composition functions are defined similarly. Namely,

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
(f \circ f)(x) & =f(f(x)) \\
(g \circ g)(x) & =g(g(x))
\end{aligned}
$$

Common Mistakes to Avoid:

- Composition of functions is different than the multiplication of functions. Therefore,

$$
(f \circ g)(x) \neq f(x) \cdot g(x)
$$

PROBLEMS

1. If $f(x)=3 x-5$ and $g(x)=x+2$ find $(f \circ g)(x)$ and $(g \circ f)(x)$.

To find $(f \circ g)(x)$ we will substitute g in for every variable that occurs in f.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(x+2) \\
& =3(x+2)-5 \\
& =3 x+6-5 \\
& =3 x+1
\end{aligned}
$$

To find $(g \circ f)(x)$ we will substitute f into every variable that occurs in g.

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g(3 x-5) \\
& =(3 x-5)+2 \\
& =3 x-3
\end{aligned}
$$

$$
\begin{aligned}
& (f \circ g)(x)=3 x+1 \\
& (g \circ f)(x)=3 x-3
\end{aligned}
$$

2. Given $f(x)=x^{2}-5 x+1$ and $g(x)=2 x+1$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

To find $(f \circ g)(x)$ we will substitute g in for every variable that occurs in f.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(2 x+1) \\
& =(2 x+1)^{2}-5(2 x+1)+1 \\
& =4 x^{2}+4 x+1-10 x-5+1 \\
& =4 x^{2}-6 x-3
\end{aligned}
$$

To find $(g \circ f)(x)$ we will substitute f into every variable that occurs in g.

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g\left(x^{2}-5 x+1\right) \\
& =2\left(x^{2}-5 x+1\right)+1 \\
& =2 x^{2}-10 x+2+1 \\
& =2 x^{2}-10 x+3
\end{aligned}
$$

$$
(f \circ g)(x)=4 x^{2}-6 x-3
$$

$$
(g \circ f)(x)=2 x^{2}-10 x+3
$$

3. Given $f(x)=3 x^{2}+2 x-5$ and $g(x)=2 x-3, \quad$ find $(f \circ g)(x)$ and $(g \circ f)(x)$.

To find $(f \circ g)(x)$ we will substitute g in for every variable that occurs in f.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(2 x-3) \\
& =3(2 x-3)^{2}+2(2 x-3)-5 \\
& =3\left(4 x^{2}-12 x+9\right)+4 x-6-5 \\
& =12 x^{2}-36 x+27+4 x-6-5 \\
& =12 x^{2}-32 x+16
\end{aligned}
$$

To find $(g \circ f)(x)$ we will substitute f into every variable that occurs in g.

$$
\begin{aligned}
(g \circ f)(x) & =g(f(x)) \\
& =g\left(3 x^{2}+2 x-5\right) \\
& =2\left(3 x^{2}+2 x-5\right)-3 \\
& =6 x^{2}+4 x-10-3 \\
& =6 x^{2}+4 x-13
\end{aligned}
$$

$$
(f \circ g)(x)=12 x^{2}-32 x+16
$$

$$
(g \circ f)(x)=6 x^{2}+4 x-13
$$

4. Given $f(x)=2 x^{2}-4 x$ and $g(x)=x^{2}+1$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

To find $(f \circ g)(x)$ we will substitute g in for every variable that occurs in f.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f\left(x^{2}+1\right) \\
& =2\left(x^{2}+1\right)^{2}-4\left(x^{2}+1\right) \\
& =2\left(x^{4}+2 x^{2}+1\right)-4 x^{2}-4 \\
& =2 x^{4}+4 x^{2}+2-4 x^{2}-4 \\
& =2 x^{4}-2
\end{aligned}
$$

To find $(g \circ f)(x)$ we will substitute f into every variable that occurs in g.

$$
\begin{aligned}
&(g \circ f)(x)=g(f(x)) \\
&=g\left(2 x^{2}-4 x\right) \\
&=\left(2 x^{2}-4 x\right)^{2}+1 \\
&=4 x^{4}-16 x^{3}+16 x^{2}+1 \\
&(f \circ g)(x)=2 x^{4}-2 \\
&(g \circ f)(x)=4 x^{4}-16 x^{3}+16 x^{2}+1
\end{aligned}
$$

5. Given $f(x)=\frac{x}{x+1}$ and $g(x)=9 x-3$, find $(f \circ g)(x)$ and $(g \circ f)(x)$.

To find $(f \circ g)(x)$ we will substitute $g(x)=9 x-3$ in for every variable that occurs in f.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =f(9 x-3) \\
& =\frac{9 x-3}{9 x-3+1} \\
& =\frac{9 x-3}{9 x-2}
\end{aligned}
$$

To find $(g \circ f)(x)$ we will substitute $f(x)=\frac{x}{x+1}$ into every variable that occurs in g.

$$
\begin{aligned}
&(g \circ f)(x)=g(f(x)) \\
&=g\left(\frac{x}{x+1}\right) \\
&=9\left(\frac{x}{x+1}\right)-3 \\
&=\frac{9 x}{x+1}-3 \\
&=\frac{9 x}{x+1}-\frac{3(x+1)}{x+1} \\
&=\frac{9 x-3(x+1)}{x+1} \\
&=\frac{9 x-3 x-3}{x+1} \\
&=\frac{6 x-3}{x+1} \\
&(f \circ g)(x)=\frac{9 x-3}{9 x-2} \\
&(g \circ f)(x)=\frac{6 x-3}{x+1}
\end{aligned}
$$

6. Given $f(x)=6 x-7$ and $g(x)=x^{2}+3 x+5$, find
(a) $(g \circ f)(-1)$

We know that $(g \circ f)(-1)=g(f(-1))$. Therefore, we will first find $f(-1)$.

$$
\begin{aligned}
f(-1) & =6(-1)-7 \\
& =-6-7 \\
& =-13
\end{aligned}
$$

Now, we will substitute -13 into every variable that occurs in g.

$$
\begin{aligned}
g(f(-1)) & =g(-13) \\
& =(-13)^{2}+3(-13)+5 \\
& =169-39+5 \\
& =135 \\
& (g \circ f)(-1)=135
\end{aligned}
$$

(b) $(f \circ f)(2)$

We know that $(f \circ f)(2)=f(f(2))$. Hence, we first will find $f(2)$.

$$
\begin{aligned}
f(2) & =6(2)-7 \\
& =12-7 \\
& =5
\end{aligned}
$$

Now, we will substitute 5 into every variable that occurs in f.

$$
\begin{aligned}
(f \circ f)(2) & =f(f(2)) \\
& =f(5) \\
& =6(5)-7 \\
& =30-7 \\
& =23 . \\
(f \circ f)(2) & =23
\end{aligned}
$$

(c) $(g \circ g)(0)$

We know that $(g \circ g)(0)=g(g(0))$. So, we first need to find $g(0)$.

$$
\begin{aligned}
g(0) & =0^{2}+3(0)+5 \\
& =5
\end{aligned}
$$

Now, we will substitute 5 into every variable that occurs in g.

$$
\begin{aligned}
&(g \circ g)(0)=g(g(0)) \\
&=g(5) \\
&=5^{2}+3(5)+5 \\
&=25+15+5 \\
&=45 . \\
&(g \circ g)(0)=45
\end{aligned}
$$

7. Express the function in the form $f \circ g$.
(a) $F(x)=\sqrt{x-7}$

Because we are looking for the form $f \circ g$, we know that f is the outside function and g is the inside function. Therefore, one answer is

$$
f(x)=\sqrt{x}, \quad g(x)=x-7
$$

(b) $F(x)=\frac{3}{x-5}$

Once again, f is the outside function and g is the inside function. Therefore, one answer is

$$
f(x)=\frac{3}{x}, \quad g(x)=x-5
$$

