Definitions:

- Function: A function f is a rule that assigns to each element x in the set A exactly one element, called $f(x)$, in the set B. The set A is called the domain and the set B is called the range.
- Domain: The domain of a function is the set of all real numbers for which the expression is defined as a real number. In other words, it is all the real numbers for which the expression "makes sense."

Important Properties:

- Remember that you cannot have a zero in the denominator.
- Remember that you cannot have a negative number under an even root.
- Remember that we can evaluate an odd root of a negative number.

Common Mistakes to Avoid:

- Do not exclude from the domain the x values which make the quantity under an odd root negative.

PROBLEMS

Find the domain of each function.

1. $h(x)=\frac{x^{3}}{x^{2}+2 x-3}$

Since we cannot have a zero in the denominator, we will first find out which numbers make the denominator zero. To do this we will solve

$$
x^{2}+2 x-3=0
$$

After solving this, we will exclude its solutions from the domain.

$$
\begin{array}{r}
x^{2}+2 x-3=0 \\
(x+3)(x-1)=0
\end{array}
$$

$$
\left.\begin{aligned}
x+3 & =0 \\
x & =-3
\end{aligned} \right\rvert\, \begin{aligned}
x-1 & =0 \\
x & =1
\end{aligned}
$$

$$
\text { Domain: } x \neq-3, \quad x \neq 1
$$

OR

Domain: All real numbers except -3 and 1
2. $f(x)=\sqrt{6-4 x}$

Remember that we cannot have a negative number under a square root. Therefore, $6-4 x$ must be either positive or zero. Hence,

$$
\begin{aligned}
6-4 x & \geq 0 \\
-4 x & \geq-6 \\
x & \leq \frac{-6}{-4} \\
x & \leq \frac{3}{2}
\end{aligned}
$$

Domain: $x \leq \frac{3}{2}$
3. $f(x)=\frac{x-1}{3 x^{2}+2 x-2}$

Since we cannot have a zero in the denominator, we will find what values of x make the denominator zero. In other words, we will solve

$$
3 x^{2}+2 x-2=0 .
$$

Once we find the solution, these numbers will then be excluded from the domain.

Since $3 x^{2}+2 x-2$ does not factor, we will use the quadratic formula to solve. Here, $a=3, b=2$ and $c=-2$.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{2^{2}-4(3)(-2)}}{2(3)} \\
& =\frac{-2 \pm \sqrt{4+24}}{6} \\
& =\frac{-2 \pm \sqrt{28}}{6} \\
& =\frac{-2 \pm 2 \sqrt{7}}{6} \\
& =\frac{2(-1 \pm \sqrt{7})}{6} \\
& =\frac{-1 \pm \sqrt{7}}{3}
\end{aligned}
$$

$$
\text { Domain: } x \neq \frac{-1 \pm \sqrt{7}}{3}
$$

4. $g(x)=\frac{\sqrt{x}}{4 x-7}$

Since we cannot have zero in the denominator, we will need to find out what value of x makes $4 x-7$ zero and exclude this from the domain.

$$
\begin{array}{r}
4 x-7=0 \\
4 x=7 \\
x=\frac{7}{4}
\end{array}
$$

In addition, we are also unable to take the square root of a negative number. Therefore, x must be positive or zero. In other words, $x \geq 0$.

As a result of excluding $x=\frac{7}{4}$ and insisting that $x \geq 0$, we get the following answer.

Domain: $x \geq 0, \quad x \neq \frac{7}{4}$
5. $g(x)=\frac{\sqrt[3]{x+1}}{x^{2}-4}$

The first thing to note is that since we can evaluate the cube root of a positive, negative, or zero number, we do not need to make any restrictions from the numerator.

However, we once again cannot have zero in the denominator. Therefore, we must find the values of x that make the denominator zero by solving

$$
x^{2}-4=0
$$

Once we have solved this, we will eliminate its solutions from the domain.

$$
\begin{aligned}
x^{2}-4 & =0 \\
x^{2} & =4 \\
\sqrt{x^{2}} & =\sqrt{4} \\
x & = \pm 2
\end{aligned}
$$

Domain: $x \neq 2, \quad x \neq-2$
6. $h(x)=\frac{2 x-3}{\sqrt[4]{x-7}}$

For this problem, not only can we not have a negative under the 4 -th root, but since the radical occurs in the denominator, we also cannot have a zero under it. Therefore, $x-7>0$. Solving this, we get
7. $f(x)=\frac{7 x+8}{6 x^{2}-19 x+10}$

We must determine where the denominator is zero. To do this we will solve

$$
6 x^{2}-19 x+10=0
$$

Therefore,

$$
\begin{aligned}
& 6 x^{2}-19 x+10=0 \\
& (3 x-2)(2 x-5)=0 \\
& 3 x-2=0 \\
& 3 x=2 \\
& x=\frac{2}{3} \\
& 2 x-5=0 \\
& 2 x=5 \\
& x=\frac{5}{2}
\end{aligned}
$$

Excluding these values from the domain, we get

$$
\text { Domain: } x \neq \frac{2}{3}, \quad x \neq \frac{5}{2}
$$

8. $g(x)=\frac{3 x^{2}+5 x-2}{\sqrt[3]{7-3 x}}$

Remember that we are able to evaluate the cube root of a negative number. However, since the cube root is in the denominator, we are not allowed to let it be zero. As a result, we will find where the denominator is zero, and exclude this value from the domain.

$$
\begin{aligned}
7-3 x & =0 \\
-3 x & =-7 \\
x & =\frac{-7}{-3} \\
x & =\frac{7}{3}
\end{aligned}
$$

Domain: $\quad x \neq \frac{7}{3}$
9. $h(x)=\frac{\sqrt{2+7 x}}{x^{2}-8 x+7}$

First, let us deal with the numerator. Because we have a square root, we are unable to take the square root of a negative number. Therefore, we will solve for where $2+7 x \geq 0$.

$$
\begin{aligned}
2+7 x & \geq 0 \\
7 x & \geq-2 \\
x & \geq \frac{-2}{7}
\end{aligned}
$$

Next, we are not allowed to have a zero in the denominator. Therefore, we will solve for where $x^{2}-8 x+7=0$ and then eliminate these values from the domain.

$$
\begin{aligned}
x^{2}-8 x+7 & =0 \\
(x-7)(x-1) & =0
\end{aligned}
$$

$$
\begin{array}{r}
x-7=0 \\
x=7
\end{array}
$$

$$
\begin{aligned}
x-1 & =0 \\
x & =1
\end{aligned}
$$

Therefore, putting these together, we get

$$
\text { Domain: } \quad x \geq \frac{-2}{7}, \quad x \neq 7, \quad x \neq 1
$$

10. $g(x)=\frac{\sqrt[4]{3 x+2}}{9 x-5}$

Since we are not able to take the 4 th root of a negative number, we need to solve for where $3 x+2 \geq 0$.

$$
\begin{aligned}
3 x+2 & \geq 0 \\
3 x & \geq-2 \\
x & \geq \frac{-2}{3}
\end{aligned}
$$

Next, the denominator cannot be zero. Hence, we will solve for where $9 x-5=0$ and eliminate this value from the domain.

$$
\begin{aligned}
9 x-5 & =0 \\
9 x & =5 \\
x & =\frac{5}{9}
\end{aligned}
$$

Putting these together, we get

$$
\text { Domain: } x \geq \frac{-2}{3}, \quad x \neq \frac{5}{9}
$$

