MATH 11011

FINDING REAL ZEROS OF A POLYNOMIAL

Definitions:

• Polynomial: is a function of the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0.$$

The numbers $a_n, a_{n-1}, \ldots, a_1, a_0$ are called coefficients. a_n is the **leading coefficient**, a_0 is the constant term and the highest exponent n is the **degree** of the polynomial.

• Zero: If P is a polynomial and if c is a number such that P(c) = 0 then c is a zero of P.

Important Properties:

- The following are all equivalent:
 - 1. c is a zero of P.
 - 2. x = c is an x-intercept of the graph of P.
 - 3. x c is a factor of P.
 - 4. x = c is a solution of the equation P(x) = 0.
- Rational Zeros Theorem: If the polynomial

 $P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_2 x^2 + a_1 x + a_0$

has integer coefficients, then every rational zero of P is of the form $\frac{p}{q}$ where

p is a factor of the constant term a_0 , and q is a factor of the leading coefficient a_n .

• The Rational Zeros Theorem does NOT list irrational zeros. These will need to be found using other means like the quadratic formula.

Steps for finding the real zeros of a polynomial:

- 1. List all *possible* rational zeros using the Rational Zeros Theorem.
- 2. Use synthetic division to test the polynomial at each of the possible rational zeros that you found in step 1. (Remember that c is a zero when the remainder is zero.)
- 3. Repeat step 2 until you reach a quotient that is a quadratic or factors easily. Use the quadratic formula or factoring to find the remaining zeros.

Common Mistakes to Avoid:

• The Rational Zeros Theorem does NOT list the rational zeros of P. It lists all POSSIBLE rational zeros.

PROBLEMS

Find all real zeros of the polynomial.

1.
$$P(x) = x^3 - 7x^2 + 14x - 8$$

Possible Zeros: ± 1 , ± 2 , ± 4 , ± 8 .

We start by trying 1 in synthetic division. Remember that 1 is a zero if the remainder is zero.

Therefore, x = 1 is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $x^2 - 6x + 8$ which can easily be factored.

$$x^{2} - 6x + 8 = 0$$
$$(x - 2)(x - 4) = 0$$

Setting each factor equal to zero, we get

$$\begin{array}{c} x - 2 = 0 \\ x = 2 \end{array} \qquad \qquad x - 4 = 0 \\ x = 4 \end{array}$$

Real zeros :
$$1, 2, 4$$

2. $P(x) = 2x^3 + 15x^2 + 22x - 15$

Possible Zeros: ± 1 , ± 3 , ± 5 , ± 15 , $\pm \frac{1}{2}$, $\pm \frac{3}{2}$, $\pm \frac{5}{2}$, $\pm \frac{15}{2}$.

We start by trying -3 in synthetic division. Remember that -3 is a zero if the remainder is zero.

-3	2	15	22	-15
		-6	-27	15
	2	9	-5	0

Therefore, x = -3 is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $2x^2 + 9x - 5$ which can easily be factored.

$$2x^2 + 9x - 5 = 0$$
$$(2x - 1)(x + 5) = 0$$

Setting each factor equal to zero, we get

$$2x - 1 = 0$$

$$2x = 1$$

$$x = \frac{1}{2}$$

$$x + 5 = 0$$

$$x = -5$$

1

Real zeros :
$$-3, -5, \frac{1}{2}$$

3. $P(x) = x^3 - 22x - 15$

Possible Zeros: ± 1 , ± 3 , ± 5 , ± 15 .

We start by trying 5 in synthetic division. Remember that 5 is a zero if the remainder is zero.

Therefore, x = 5 is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $x^2 + 5x + 3$ which cannot be factored. Using the quadratic formula to solve $x^2 + 5x + 3 = 0$, we get

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-5 \pm \sqrt{5^2 - 4(1)(3)}}{2(1)}$$
$$= \frac{-5 \pm \sqrt{25 - 12}}{2}$$
$$= \frac{-5 \pm \sqrt{13}}{2}$$

Real zeros :	5	$-5 \pm \sqrt{13}$
iteal zelos.	э,	2

4. $P(x) = x^3 + 3x^2 + 6x + 4$.

Possible Zeros: ± 1 , ± 2 , ± 4 .

We start by trying -1 in synthetic division. Remember that -1 is a zero if the remainder is zero.

Therefore, x = -1 is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic

 $x^2 + 2x + 4$ which cannot be factored. Using the quadratic formula to solve $x^2 + 2x + 4 = 0$, we get

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-2 \pm \sqrt{2^2 - 4(1)(4)}}{2(1)}$$
$$= \frac{-5 \pm \sqrt{4 - 16}}{2}$$
$$= \frac{-5 \pm \sqrt{-12}}{2}$$

Because there is a negative under the square root, these zeros are not real. Therefore, we have no further real zeros.

Real zeros : -1

5.
$$P(x) = 2x^4 + x^3 - 16x^2 + 3x + 18.$$

Possible Zeros: $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18, \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}.$

We start by trying 2 in synthetic division. Remember that 2 is a zero if the remainder is zero.

2	2	1	-16	3	18
		4	10	-12	-18
	2	5	-6	-9	0

Therefore, x = 2 is a our first zero. However, our quotient is not a quadratic. Therefore, we will try to find one more zero by using synthetic division. We will try -1.

-1	2	5	-6	-9
		-2	-3	9
	2	3	-9	0

Hence, x = -1 is our second zero. Since the quotient resulting from this synthetic division is the quadratic $2x^2 + 3x - 9$, we will factor this to solve.

$$2x^2 + 3x - 9 = 0$$
$$(2x - 3)(x + 3) = 0$$

Setting each factor equal to zero, we get

$$2x - 3 = 0$$

$$2x = 3$$

$$x = \frac{3}{2}$$

$$x + 3 = 0$$

$$x = -3$$

Real zeros : 2, -1, -3, $\frac{3}{2}$

6.
$$P(x) = 2x^4 + 7x^3 - x^2 - 15x - 9$$

Possible Zeros: ± 1 , ± 3 , ± 9 , $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}.$

We start by trying -1 in synthetic division. Remember that -1 is a zero if the remainder is zero.

-1	2	7	-1	-15	-9
		-2	-5	6	9
	2	5	-6	-9	0

Therefore, x = -1 is our first zero. However, our quotient is not a quadratic. Therefore, we will try to find one more zero by using synthetic division. We will try -3.

$$\begin{array}{c|ccccc} -3 & 2 & 5 & -6 & -9 \\ & -6 & 3 & 9 \\ \hline & 2 & -1 & -3 & 0 \end{array}$$

Hence, x = -3 is our second zero. Since the quotient resulting from this synthetic division is the quadratic $2x^2 - x - 3$, we will factor this to solve.

$$2x^2 - x - 3 = 0$$
$$(2x - 3)(x + 1) = 0$$

Setting each factor equal to zero, we get

$$2x - 3 = 0$$

$$2x = 3$$

$$x = \frac{3}{2}$$

$$x = -1$$
Real zeros : $-1, -3, \frac{3}{2}$

NOTE: x = -1 is a double zero. It occurs two times. However, you only need to list it once.

7.
$$P(x) = 6x^4 - 8x^3 - 41x^2 + 23x + 30.$$

Possible Zeros: ± 1 , ± 2 , ± 3 , ± 5 , ± 6 ,
 ± 10 , ± 15 , ± 30
 $\pm \frac{1}{2}$, $\pm \frac{3}{2}$, $\pm \frac{5}{2}$,
 $\pm \frac{1}{3}$, $\pm \frac{2}{3}$, $\pm \frac{5}{3}$, $\pm \frac{10}{3}$,
 $\pm \frac{1}{6}$, $\pm \frac{5}{6}$

We start by trying 3 in synthetic division. Remember that 3 is a zero if the remainder is zero.

3	6	-8	-41	23	30
		18	30	-33	-30
	6	10	-11	-10	0

Therefore, x = 3 is a our first zero. However, our quotient is not a quadratic. Therefore, we will try to find one more zero by using synthetic division. We will try $-\frac{2}{3}$.

$-\frac{2}{3}$	6	10	-11	-10
Ŭ		-4	-4	10
	6	6	-15	0

Hence, $x = -\frac{2}{3}$ is our second zero. Since the quotient resulting from this synthetic division is the quadratic $6x^2 + 6x - 15$, we need to solve this.

$$6x^2 + 6x - 15 = 0$$
$$3(2x^2 + 2x - 5) = 0$$

Using the quadratic formula to solve $2x^2 + 2x - 5 = 0$, we get

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

= $\frac{-2 \pm \sqrt{2^2 - 4(2)(-5)}}{2(2)}$
= $\frac{-2 \pm \sqrt{4 + 40}}{4}$
= $\frac{-2 \pm \sqrt{44}}{4}$
= $\frac{-2 \pm 2\sqrt{11}}{4}$
= $\frac{2(-1 \pm \sqrt{11})}{4}$
= $\frac{-1 \pm \sqrt{11}}{2}$

	9	2	$-1 \pm \sqrt{11}$
Real zeros :	3,	$-\overline{3}$,	2