Definitions:

- Polynomial: is a function of the form

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0} .
$$

The numbers $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are called coefficients. a_{n} is the leading coefficient, a_{0} is the constant term and the highest exponent n is the degree of the polynomial.

- Zero: If P is a polynomial and if c is a number such that $P(c)=0$ then c is a zero of P.

Important Properties:

- The following are all equivalent:

1. c is a zero of P.
2. $x=c$ is an x-intercept of the graph of P.
3. $x-c$ is a factor of P.
4. $x=c$ is a solution of the equation $P(x)=0$.

- Rational Zeros Theorem: If the polynomial

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

has integer coefficients, then every rational zero of P is of the form $\frac{p}{q}$ where p is a factor of the constant term a_{0}, and q is a factor of the leading coefficient a_{n}.

- The Rational Zeros Theorem does NOT list irrational zeros. These will need to be found using other means like the quadratic formula.

Steps for finding the real zeros of a polynomial:

1. List all possible rational zeros using the Rational Zeros Theorem.
2. Use synthetic division to test the polynomial at each of the possible rational zeros that you found in step 1. (Remember that c is a zero when the remainder is zero.)
3. Repeat step 2 until you reach a quotient that is a quadratic or factors easily. Use the quadratic formula or factoring to find the remaining zeros.

Common Mistakes to Avoid:

- The Rational Zeros Theorem does NOT list the rational zeros of P. It lists all POSSIBLE rational zeros.

PROBLEMS

Find all real zeros of the polynomial.

1. $P(x)=x^{3}-7 x^{2}+14 x-8$

Possible Zeros: $\pm 1, \pm 2, \pm 4, \pm 8$.
We start by trying 1 in synthetic division. Remember that 1 is a zero if the remainder is zero.

1	1	-7	14	-8
		1	-6	8
	1	-6	8	0

Therefore, $x=1$ is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $x^{2}-6 x+8$ which can easily be factored.

$$
\begin{aligned}
x^{2}-6 x+8 & =0 \\
(x-2)(x-4) & =0
\end{aligned}
$$

Setting each factor equal to zero, we get

\[

\]

2. $P(x)=2 x^{3}+15 x^{2}+22 x-15$

Possible Zeros: $\pm 1, \pm 3, \pm 5, \pm 15$,

$$
\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \pm \frac{15}{2}
$$

We start by trying -3 in synthetic division. Remember that -3 is a zero if the remainder is zero.

-3	2	15	22	-15
		-6	-27	15
	2	9	-5	0

Therefore, $x=-3$ is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $2 x^{2}+9 x-5$ which can easily be factored.

$$
\begin{array}{r}
2 x^{2}+9 x-5=0 \\
(2 x-1)(x+5)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
& \left.\left.\begin{array}{rl}
& \\
2 x-1 & =0 \\
2 x & =1 \\
x & =\frac{1}{2}
\end{array} \right\rvert\, \begin{array}{rl}
& x+5
\end{array}\right) \\
& \text { Real zeros: } \quad-3,-5, \frac{1}{2}
\end{aligned}
$$

3. $P(x)=x^{3}-22 x-15$

Possible Zeros: $\pm 1, \pm 3, \pm 5, \pm 15$.
We start by trying 5 in synthetic division. Remember that 5 is a zero if the remainder is zero.

5	1	0	-22	-15
		5	25	15
	1	5	3	0

Therefore, $x=5$ is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $x^{2}+5 x+3$ which cannot be factored. Using the quadratic formula to solve $x^{2}+5 x+3=0$, we get

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-5 \pm \sqrt{5^{2}-4(1)(3)}}{2(1)} \\
& =\frac{-5 \pm \sqrt{25-12}}{2} \\
& =\frac{-5 \pm \sqrt{13}}{2}
\end{aligned}
$$

Real zeros : $5, \frac{-5 \pm \sqrt{13}}{2}$
4. $P(x)=x^{3}+3 x^{2}+6 x+4$.

Possible Zeros: $\pm 1, \pm 2, \pm 4$.
We start by trying -1 in synthetic division. Remember that -1 is a zero if the remainder is zero.

$$
\begin{array}{r|rrrr}
-1 & 1 & 3 & 6 & 4 \\
& & -1 & -2 & -4 \\
\hline & 1 & 2 & 4 & 0
\end{array}
$$

Therefore, $x=-1$ is a our first zero. Since the quotient resulting from synthetic division is always one degree less, the quotient that we have is the quadratic $x^{2}+2 x+4$ which cannot be factored. Using the quadratic formula to solve $x^{2}+2 x+4=0$, we get

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{2^{2}-4(1)(4)}}{2(1)} \\
& =\frac{-5 \pm \sqrt{4-16}}{2} \\
& =\frac{-5 \pm \sqrt{-12}}{2}
\end{aligned}
$$

Because there is a negative under the square root, these zeros are not real. Therefore, we have no further real zeros.

$$
\begin{array}{|l|l|}
\hline \text { Real zeros: } & -1 \\
\hline
\end{array}
$$

5. $P(x)=2 x^{4}+x^{3}-16 x^{2}+3 x+18$.

Possible Zeros: $\pm 1, \pm 2, \pm 3, \pm 6, \pm 9, \pm 18$, $\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2}$.

We start by trying 2 in synthetic division. Remember that 2 is a zero if the remainder is zero.

$$
\begin{array}{r|rrrrr}
2 & 2 & 1 & -16 & 3 & 18 \\
& & 4 & 10 & -12 & -18 \\
\hline & 2 & 5 & -6 & -9 & 0
\end{array}
$$

Therefore, $x=2$ is a our first zero. However, our quotient is not a quadratic. Therefore, we will try to find one more zero by using synthetic division. We will try -1 .

$$
\begin{array}{r|rrrr}
-1 & 2 & 5 & -6 & -9 \\
& & -2 & -3 & 9 \\
\hline & 2 & 3 & -9 & 0
\end{array}
$$

Hence, $x=-1$ is our second zero. Since the quotient resulting from this synthetic division is the quadratic $2 x^{2}+3 x-9$, we will factor this to solve.

$$
\begin{aligned}
2 x^{2}+3 x-9 & =0 \\
(2 x-3)(x+3) & =0
\end{aligned}
$$

Setting each factor equal to zero, we get

$$
\begin{array}{c|r}
2 x-3=0 & x+3=0 \\
2 x=3 & x=-3 \\
x=\frac{3}{2} & \\
\text { Real zeros : } 2,-1,-3, \frac{3}{2}
\end{array}
$$

6. $P(x)=2 x^{4}+7 x^{3}-x^{2}-15 x-9$

Possible Zeros: $\pm 1, \pm 3, \pm 9$,

$$
\pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{9}{2} .
$$

We start by trying -1 in synthetic division. Remember that -1 is a zero if the remainder is zero.

$$
\begin{array}{r|rrrrr}
-1 & 2 & 7 & -1 & -15 & -9 \\
& & -2 & -5 & 6 & 9 \\
\hline & 2 & 5 & -6 & -9 & 0
\end{array}
$$

Therefore, $x=-1$ is our first zero. However, our quotient is not a quadratic. Therefore, we will try to find one more zero by using synthetic division. We will try -3 .

$$
\begin{array}{r|rrrr}
-3 & 2 & 5 & -6 & -9 \\
& & -6 & 3 & 9 \\
\hline & 2 & -1 & -3 & 0
\end{array}
$$

Hence, $x=-3$ is our second zero. Since the quotient resulting from this synthetic division is the quadratic $2 x^{2}-x-3$, we will factor this to solve.

$$
\begin{array}{r}
2 x^{2}-x-3=0 \\
(2 x-3)(x+1)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
2 x-3 & =0 \\
2 x & =3 \\
x & =\frac{3}{2}
\end{aligned} \begin{aligned}
& x+1=0 \\
& x=-1 \\
& \\
& \hline \text { Real zeros : }-1,-3, \frac{3}{2}
\end{aligned}
$$

NOTE: $x=-1$ is a double zero. It occurs two times. However, you only need to list it once.
7. $P(x)=6 x^{4}-8 x^{3}-41 x^{2}+23 x+30$.

Possible Zeros: $\pm 1, \pm 2, \pm 3, \pm 5, \pm 6$,

$$
\begin{aligned}
& \pm 10, \pm 15, \pm 30 \\
& \pm \frac{1}{2}, \pm \frac{3}{2}, \pm \frac{5}{2}, \\
& \pm \frac{1}{3}, \pm \frac{2}{3}, \pm \frac{5}{3}, \pm \frac{10}{3}, \\
& \pm \frac{1}{6}, \pm \frac{5}{6}
\end{aligned}
$$

We start by trying 3 in synthetic division. Remember that 3 is a zero if the remainder is zero.

3	6	-8	-41	23	30
		18	30	-33	-30
	6	10	-11	-10	0

Therefore, $x=3$ is a our first zero. However, our quotient is not a quadratic. Therefore, we will try to find one more zero by using synthetic division. We will try $-\frac{2}{3}$.

$$
\begin{array}{r|rrrr}
-\frac{2}{3} & 6 & 10 & -11 & -10 \\
& & -4 & -4 & 10 \\
\hline & 6 & 6 & -15 & 0
\end{array}
$$

Hence, $x=-\frac{2}{3}$ is our second zero. Since the quotient resulting from this synthetic division is the quadratic $6 x^{2}+6 x-15$, we need to solve this.

$$
\begin{array}{r}
6 x^{2}+6 x-15=0 \\
3\left(2 x^{2}+2 x-5\right)=0
\end{array}
$$

Using the quadratic formula to solve $2 x^{2}+2 x-5=0$, we get

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-2 \pm \sqrt{2^{2}-4(2)(-5)}}{2(2)} \\
& =\frac{-2 \pm \sqrt{4+40}}{4} \\
& =\frac{-2 \pm \sqrt{44}}{4} \\
& =\frac{-2 \pm 2 \sqrt{11}}{4} \\
& =\frac{2(-1 \pm \sqrt{11})}{4} \\
& =\frac{-1 \pm \sqrt{11}}{2}
\end{aligned}
$$

$$
\text { Real zeros: } 3,-\frac{2}{3}, \frac{-1 \pm \sqrt{11}}{2}
$$

