Definitions:

- Rectangular Coordinate System: consists of a vertical line called the y-axis and a horizontal line called the x-axis. The x-axis and y-axis divide the coordinate plane into four quadrants and intersect at a point called the origin. Each point in the plane corresponds to a unique ordered pair (x, y).
- Midpoint: of a line segment $A B$ is the point that is equidistant from the endpoints A and B.

Important Properties:

- Distance formula: Suppose that $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ are two points in the coordinate plane. The distance between A and B, denoted $d(A, B)$, is given by

$$
d(A, B)=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

It does not matter in what order you subtract the x-coordinates or the y-coordinates.

- Midpoint formula: Suppose that $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$ are the endpoints of the line segment $A B$. Then the midpoint M of $A B$ is given by

$$
M=\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) .
$$

- Pythagorean Theorem: In a right triangle, if the side opposite the right angle has length c and the other two sides have lengths a and b, then

$$
a^{2}+b^{2}=c^{2}
$$

The side opposite the right angle is called the hypotenuse and the other two sides are called legs.

- The converse of the Pythagorean Theorem is also true. Namely, if a triangle has sides of lengths a, b and c which satisfy $a^{2}+b^{2}=c^{2}$, then the triangle is a right triangle.

Common Mistakes to Avoid:

- The midpoint is found by averaging the x-coordinates and averaging the y-coordinates. Do NOT subtract them.
- The square root of a sum is NOT the sum of the square roots. In other words,

$$
\sqrt{x^{2}+y^{2}} \neq \sqrt{x^{2}}+\sqrt{y^{2}}
$$

To illustrate this with an example, notice that

$$
\sqrt{9+16}=\sqrt{25}=5 \quad \text { whereas } \quad \sqrt{9}+\sqrt{16}=3+4=7
$$

- When using the Pythagorean Theorem, make sure that the hypotenuse is on a side by itself; namely,

$$
\operatorname{leg}^{2}+\operatorname{leg}^{2}=\text { hypotenuse }{ }^{2}
$$

PROBLEMS

1. Find the distance between the given points.
(a) $A=(2,0)$ and $B=(0,9)$

$$
\begin{aligned}
d(A, B) & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(2-0)^{2}+(0-9)^{2}} \\
& =\sqrt{(2)^{2}+(-9)^{2}} \\
= & \sqrt{4+81} \\
= & \sqrt{85} \\
& d(A, B)=\sqrt{85}
\end{aligned}
$$

(b) $A=(-2,5)$ and $B=(12,3)$

$$
\begin{aligned}
d(A, B) & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(-2-12)^{2}+(5-3)^{2}} \\
& =\sqrt{(-14)^{2}+(2)^{2}} \\
& =\sqrt{196+4} \\
& =\sqrt{200} \\
& =\sqrt{100} \sqrt{2} \\
& =10 \sqrt{2} \\
& d(A, B)=10 \sqrt{2}
\end{aligned}
$$

(c) $A=(-2,3)$ and $B=(9,-3)$

$$
\begin{aligned}
d(A, B) & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(-2-9)^{2}+(3-(-3))^{2}} \\
& =\sqrt{(-11)^{2}+(6)^{2}} \\
& =\sqrt{121+36} \\
& =\sqrt{157} \\
& d(A, B)=\sqrt{157}
\end{aligned}
$$

\qquad
(d) $A=(-1,-5)$ and $B=(-4,7)$

$$
\begin{aligned}
d(A, B)= & \sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
= & \sqrt{(-1-(-4))^{2}+(-5-7)^{2}} \\
= & \sqrt{(3)^{2}+(-12)^{2}} \\
= & \sqrt{9+144} \\
= & \sqrt{153} \\
= & \sqrt{9} \sqrt{17} \\
= & 3 \sqrt{17} \\
& d(A, B)=3 \sqrt{17}
\end{aligned}
$$

2. Find the midpoint M of the line segment $A B$ where
(a) $A=(8,-4)$ and $B=(-2,2)$

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{8+-2}{2}, \frac{-4+2}{2}\right) \\
& =\left(\frac{6}{2}, \frac{-2}{2}\right) \\
& =(3,-1) \\
& M=(3,-1)
\end{aligned}
$$

(b) $A=(5,-6)$ and $B=(-2,11)$

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{5+-2}{2}, \frac{-6+11}{2}\right) \\
& =\left(\frac{3}{2}, \frac{5}{2}\right) \\
& M=\left(\frac{3}{2}, \frac{5}{2}\right)
\end{aligned}
$$

(c) $A=(8,2)$ and $B=\left(\frac{1}{2},-\frac{1}{2}\right)$

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{8+\frac{1}{2}}{2}, \frac{2+-\frac{1}{2}}{2}\right) \\
& =\left(\frac{\frac{17}{2}}{2}, \frac{3}{2}\right) \\
& =\left(\frac{17}{4}, \frac{3}{4}\right) \\
& M=\left(\frac{17}{4}, \frac{3}{4}\right)
\end{aligned}
$$

3. If $M=(3,-2)$ is the midpoint of the line segment $A B$ and if $A=(-9,2)$ find the coordinates of B.

Let $B=(x, y)$. Then using the midpoint formula we get

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
(3,-2) & =\left(\frac{x+(-9)}{2}, \frac{y+2}{2}\right)
\end{aligned}
$$

Therefore, equating coordinates, we find that

$$
\begin{aligned}
& \frac{x+(-9)}{2}=3 \\
& x+(-9)=6 \\
& x=15 \\
& \frac{y+2}{2}=-2 \\
& y+2=-4 \\
& y=-6
\end{aligned}
$$

$$
B=(15,-6)
$$

4. Find the point on the line segment $A B$ that is one-fourth of the distance from the point $A=(3,-4)$ to the point $B=(-5,12)$.

First, we will find the midpoint of the line segment.

$$
\begin{aligned}
M & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{3+-5}{2}, \frac{-4+12}{2}\right) \\
& =\left(\frac{-2}{2}, \frac{8}{2}\right) \\
& =(-1,4)
\end{aligned}
$$

Now, M is one-half the distance from A to B. Therefore, the point we need, lets call it C, is the midpoint between A and M.

$$
\begin{aligned}
C & =\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right) \\
& =\left(\frac{3+-1}{2}, \frac{-4+4}{2}\right) \\
& =\left(\frac{2}{2}, \frac{0}{2}\right) \\
& =(1,0)
\end{aligned}
$$

$$
C=(1,0)
$$

5. Determine the point C on the x-axis that is equidistant from $A=(-2,3)$ and $B=(1,-5)$.

NOTE: Although we are looking for the point equidistant, we are NOT looking for the midpoint. Since we are told the point lies on the x-axis, we are looking for a point of the form $C=(x, 0)$. Since they are equidistant, they must have the same distances. Therefore, we will equate the distance formulas.

$$
\begin{aligned}
& d(A, C)=d(B, C) \\
& \sqrt{(-2-x)^{2}+(3-0)^{2}}=\sqrt{(1-x)^{2}+(-5-0)^{2}} \\
&(-2-x)^{2}+(3)^{2}=(1-x)^{2}+(-5)^{2} \\
& 4+4 x+x^{2}+9=1-2 x+x^{2}+25 \\
& x^{2}+4 x+13=x^{2}-2 x+26 \\
& 4 x+13=-2 x+26 \\
& 6 x+13=26 \\
& 6 x=13 \\
& x=\frac{13}{6} \\
& C=\left(\frac{13}{6}, 0\right)
\end{aligned}
$$

6. Determine if $A=(2,-3), B=(1,8)$ and $C=(-4,2)$ are the vertices of a right triangle.

To solve this, we will first find the distances between the three points. Then we will check to see if they satisfy the Pythagorean Theorem.

$$
\begin{aligned}
d(A, B) & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(2-1)^{2}+(-3-8)^{2}} \\
& =\sqrt{(1)^{2}+(-11)^{2}} \\
& =\sqrt{1+121} \\
& =\sqrt{122}
\end{aligned}
$$

$$
\begin{aligned}
d(A, C) & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(2-(-4))^{2}+(-3-2)^{2}} \\
& =\sqrt{(6)^{2}+(-5)^{2}} \\
& =\sqrt{36+25} \\
& =\sqrt{61}
\end{aligned}
$$

$$
\begin{aligned}
d(B, C) & =\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}} \\
& =\sqrt{(1-(-4))^{2}+(8-2)^{2}} \\
& =\sqrt{(5)^{2}+(6)^{2}} \\
& =\sqrt{25+36} \\
& =\sqrt{61}
\end{aligned}
$$

Now, substituting into $a^{2}+b^{2}=c^{2}$, we find

$$
\begin{aligned}
a^{2}+b^{2} & =c^{2} \\
(\sqrt{61})^{2}+(\sqrt{61})^{2} & =(\sqrt{122})^{2} \\
61+61 & =122 \\
122 & =122 \star
\end{aligned}
$$

Therefore, by the converse of the Pythagorean Theorem,

$$
\text { Triangle } A B C \text { is a right triangle. }
$$

