PARALLEL, PERPENDICULAR, VERTICAL AND HORIZONTAL LINES

Definitions:

- Parallel Lines: are two lines in the same plane that never intersect.
- Perpendicular Lines: are two lines that intersect to form a 90° angle.
- Vertical Lines: always have the equation $x=c$, for some constant c. For example, the equation of the vertical line through (a, b) is $x=a$.
- Horizontal Lines: always have the equation $y=c$, for some constant c. For example, the equation of the horizontal line through (a, b) is $y=b$.

Important Properties:

- Two lines are parallel if and only if they have exactly the same slope.
- Two lines are perpendicular if and only if the product of their slopes is -1 . In other words, their slopes are negative reciprocals of one another.
- Vertical lines have undefined slope (or no slope).
- Horizontal lines have zero slope.
- A vertical line is parallel to another vertical line. Similarly, a horizontal line is parallel to another horizontal line.
- A vertical line is perpendicular to a horizontal line. Similarly, a horizontal line is perpendicular to a vertical line.

Common Mistakes to Avoid:

- Be sure to reduce all fractions into lowest terms. For example, if line 1 has slope $\frac{2}{3}$ and line 2 has slope $\frac{4}{6}$, then these lines are parallel since $\frac{2}{3}=\frac{4}{6}$.
- The product of two slopes must be negative one in order for the lines to be perpendicular. For examples, if line 1 has slope $\frac{2}{3}$ and line 2 has slope $\frac{3}{2}$, then these lines are NOT perpendicular since their product is positive one.
- Notice that no slope and zero slope are different. A vertical line has no slope while a horizontal line has zero slope.

PROBLEMS

1. Find the equation of the vertical line through $(-6,3)$.

$$
x=-6
$$

2. Find the equation of the horizontal line through $\left(\frac{2}{7}, 4\right)$.

$$
y=4
$$

3. Find the equation of the line parallel to $x=3$ and passes through $(-9,5)$

RECALL: $x=3$ is a vertical line. One vertical line is parallel to another vertical line. Therefore, the line that we are looking for is the vertical line through $(-9,5)$.

$$
x=-9
$$

4. Find the equation of the line perpendicular to $y=-2$ through $(1,5)$.

RECALL: $y=-2$ is a horizontal line and a vertical line is perpendicular to a horizontal line. Therefore, we are looking for the vertical line through $(1,5)$.

$$
x=1
$$

5. Determine whether the following lines are parallel, perpendicular, or neither.

$$
3 x-5 y=10 \quad \text { and } \quad 5 x+3 y=7
$$

NOTE: First, put each line in slope-intercept form. Once in this form, the slope is the coefficient on x.

$$
\begin{aligned}
3 x-5 y & =10 \\
-5 y & =-3 x+10 \\
y & =\frac{3}{5} x-2
\end{aligned}
$$

$$
\text { slope }=\frac{3}{5}
$$

$$
\begin{aligned}
5 x+3 y & =7 \\
3 y & =-5 x+7 \\
y & =-\frac{5}{3} x+\frac{7}{3} \\
\text { slope } & =-\frac{5}{3}
\end{aligned}
$$

Since $\frac{3}{5} \cdot\left(-\frac{5}{3}\right)=-1$,

> the two lines are perpendicular
6. Determine whether the following lines are parallel, perpendicular, or neither.

$$
2 x+5 y=-9 \quad \text { and } \quad 6 x+15 y=3
$$

$$
\begin{aligned}
2 x+5 y & =-9 \\
5 y & =-2 x-9 \\
y & =-\frac{2}{5} x-\frac{9}{5} \\
\text { slope } & =-\frac{2}{5}
\end{aligned}
$$

$$
\begin{aligned}
6 x+15 y & =3 \\
15 y & =-6 x+3 \\
y & =-\frac{6}{15} x+\frac{3}{15} \\
y & =-\frac{2}{5} x+\frac{1}{5} \\
\text { slope } & =-\frac{2}{5}
\end{aligned}
$$

Since the slopes are identical,
the two lines are parallel.
7. Find the equation of the line parallel to the $2 x-3 y=10$, passing through $(-8,3)$.

NOTE: First you need to find the slope of the line $2 x-3 y=10$ by placing it in slopeintercept form.

$$
\begin{aligned}
2 x-3 y & =10 \\
-3 y & =-2 x+10 \\
y & =\frac{2}{3} x-\frac{10}{3}
\end{aligned}
$$

Therefore, $m=\frac{2}{3}$

$$
\begin{aligned}
& y-3=\frac{2}{3}(x+8) \\
& y-3=\frac{2}{3} x+\frac{16}{3}
\end{aligned}
$$

$$
y=\frac{2}{3} x+\frac{25}{3}
$$

8. Find the equation of the line parallel to $3 x=4 y+5$ through $(2,-3)$

NOTE: Once again, you need to find the slope of $3 x=4 y+5$ by placing it in slopeintercept form.

$$
\begin{aligned}
3 x & =4 y+5 \\
3 x-5 & =4 y \\
\frac{3}{4} x-\frac{5}{4} & =y
\end{aligned}
$$

Therefore, $m=\frac{3}{4}$

$$
\begin{aligned}
& y+3=\frac{3}{4}(x-2) \\
& y+3=\frac{3}{4} x-\frac{3}{2} \\
& y=\frac{3}{4} x-\frac{9}{2}
\end{aligned}
$$

9. Find the equation of the line perpendicular to $2 x+3 y=8$ passing through $(-1,4)$.

NOTE: First, we need to find the slope of the given line by placing it in slope-intercept form.

$$
\begin{aligned}
2 x+3 y & =8 \\
3 y & =-2 x+8 \\
y & =-\frac{2}{3}+\frac{8}{3} \\
\text { Therefore, } m & =-\frac{2}{3}
\end{aligned}
$$

Slope of perpendicular line $=\frac{3}{2}$

$$
\begin{aligned}
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-4=\frac{3}{2}(x-(-1)) \\
& y-4=\frac{3}{2}(x+1) \\
& y-4=\frac{3}{2} x+\frac{3}{2} \\
& y=\frac{3}{2} x+\frac{11}{2} \\
& y=\frac{3}{2} x+\frac{11}{2}
\end{aligned}
$$

10. Find the equation of the line perpendicular to $2 x-y=7$ passing through $(8,5)$.

NOTE: Find the slope of the given line by placing it in slope-intercept form.

$$
\begin{aligned}
2 x-y & =7 \\
-y & =-2 x+7 \\
y & =2 x-7
\end{aligned}
$$

Therefore, $m=2$
Slope of perpendicular line $=-\frac{1}{2}$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-5 & =-\frac{1}{2}(x-8) \\
y-5 & =-\frac{1}{2} x+4 \\
y & =-\frac{1}{2} x+9 \\
y & =-\frac{1}{2} x+9
\end{aligned}
$$

11. Find the equation of the line passing through $(-1,4)$ which is perpendicular to the line passing through $(2,3)$ and $(4,2)$.

NOTE: First, we must find the slope of the line passing through $(2,3)$ and $(4,2)$.

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{3-2}{2-4}=\frac{1}{-2}=-\frac{1}{2}
$$

Slope of the perpendicular line $=2$.

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-4 & =2(x-(-1)) \\
y-4 & =2(x+1) \\
y-4 & =2 x+2 \\
y & =2 x+6 \\
y & =2 x+6
\end{aligned}
$$

12. Find the equation of the line parallel to $6 x+2 y=7$ passing through $(0,4)$.

NOTE: $(0,4)$ is the y-intercept of the line. Therefore, we can use the slope-intercept form once we have the slope.

$$
\begin{aligned}
6 x+2 y & =7 \\
2 y & =-6 x+7 \\
y & =-3 x+\frac{7}{2}
\end{aligned}
$$

Therefore, $m=-3$
Slope of parallel line $=-3$.
$y=m x+b$
$y=-3 x+4$

$$
y=-3 x+4
$$

