Definitions:

- Quadratic function: is a function that can be written in the form

$$
f(x)=a x^{2}+b x+c
$$

where a, b, and c are real numbers and $a \neq 0$.

- Parabola: The graph of a squaring function is called a parabola. It is a U-shaped graph.
- Vertex of a parabola: The point on the parabola where the graph changes direction. It is the lowest point if $a>0$, and it is the highest point if $a<0$.
- Standard form of a quadratic function: A quadratic function $f(x)=a x^{2}+b x+c$ can be expressed in the standard form

$$
f(x)=a(x-h)^{2}+k
$$

by completing the square.

Important Properties:

- Extreme values of a quadratic function: Consider the quadratic function $f(x)=a(x-h)^{2}+k$.
- If $a>0$, then the parabola opens up. Therefore, the minimum value of f occurs at $x=h$ and its value is $f(h)=k$.
- If $a<0$, the parabola opens down. Therefore, the maximum value of f occurs at $x=h$ and its value is $f(h)=k$.
- Vertex Formula: Given the quadratic $f(x)=a x^{2}+b x+c$, the vertex is found using

$$
\left(-\frac{b}{2 a}, f\left(-\frac{b}{2 a}\right)\right) .
$$

Common Mistakes to Avoid:

- Notice that the maximum or minimum value is the y-coordinate of the parabola's vertex. Do not record the extreme value as the x-coordinate.
- Determining whether the y-coordinate of the vertex is a maximum or minimum depends on whether a is positive or negative. It does NOT depend on whether the y-coordinate is positive or negative.

PROBLEMS

1. Find the maximum or minimum value of each quadratic function. State whether it is a maximum or minimum.
(a) $f(x)=3 x^{2}-6 x+2$

Here, we know that $a=3, b=-6$ and $c=2$. Since $a>0$, we know that the y-coordinate of the vertex is a minimum. However, to find the y-coordinate of our vertex we first need to find the x-coordinate of the vertex by using $x=-\frac{b}{2 a}$.

$$
\begin{aligned}
x & =-\frac{b}{2 a} \\
& =-\frac{-6}{2(3)} \\
& =-\frac{-6}{6} \\
& =1
\end{aligned}
$$

Now that we have the x-coordinate, we can find the y-coordinate of the vertex by finding $f(1)$.

$$
\begin{aligned}
f(1) & =3(1)^{2}-6(1)+2 \\
& =3-6+2 \\
& =-1
\end{aligned}
$$

$$
\text { Minimum }=-1
$$

(b) $f(x)=-2 x^{2}+8 x+9$

Here, we know that $a=-2, b=8$ and $c=9$. Since $a<0$, we know that the y-coordinate of the vertex is a maximum. However, to find the y-coordinate of our vertex we first need to find the x-coordinate of the vertex by using $x=-\frac{b}{2 a}$.

$$
\begin{aligned}
x & =-\frac{b}{2 a} \\
& =-\frac{8}{2(-2)} \\
& =-\frac{8}{-4} \\
& =2
\end{aligned}
$$

Now that we have the x-coordinate, we can find the y-coordinate of the vertex by finding $f(2)$.

$$
\begin{aligned}
f(2) & =-2(2)^{2}+8(2)+9 \\
& =-2(4)+16+9 \\
& =-8+16+9 \\
& =17
\end{aligned}
$$

Maximum $=17$
(c) $f(x)=2 x^{2}-3 x+1$

Here, we know that $a=2, b=-3$ and $c=1$. Since $a>0$, we know that the y-coordinate of the vertex is a minimum. However, to find the y-coordinate of our vertex we first need to find the x-coordinate of the vertex by using $x=-\frac{b}{2 a}$.

$$
\begin{aligned}
x & =-\frac{b}{2 a} \\
& =-\frac{-3}{2(2)} \\
& =-\frac{-3}{4} \\
& =\frac{3}{4}
\end{aligned}
$$

Now that we have the x-coordinate, we can find the y-coordinate of the vertex by finding $f\left(\frac{3}{4}\right)$.

$$
\begin{aligned}
f\left(\frac{3}{4}\right) & =2\left(\frac{3}{4}\right)^{2}-3\left(\frac{3}{4}\right)+1 \\
& =2\left(\frac{9}{16}\right)-\frac{9}{4}+1 \\
& =\frac{9}{8}-\frac{9}{4}+1 \\
& =\frac{9}{8}-\frac{18}{8}+\frac{8}{8} \\
& =-\frac{1}{8} \\
& \text { Minimum }=-\frac{1}{8}
\end{aligned}
$$

(d) $f(x)=-x^{2}-8 x+7$

Here, we have $a=-1, \quad b=-8$ and $c=7$. Since $a<0$, we know that the y-coordinate of the vertex is a maximum. However, to find the y-coordinate of our vertex we first need to find the x-coordinate of the vertex by using $x=-\frac{b}{2 a}$.

$$
\begin{aligned}
x & =-\frac{b}{2 a} \\
& =-\frac{-8}{2(-1)} \\
& =-\frac{-8}{-2} \\
& =-4
\end{aligned}
$$

Now that we have the x-coordinate, we can find the y-coordinate of the vertex by finding $f(-4)$.

$$
\begin{aligned}
f(-4) & =-(-4)^{2}-8(-4)+7 \\
& =-16+32+7 \\
& =23
\end{aligned}
$$

Maximum $=23$

NOTE: you can also solve the above problems by placing the quadratic in standard form and identifying the y-coordinate that way.
2. During the annual frog jumping contest at the county fair, the height of the frog's jump, in feet, is given by

$$
f(x)=-\frac{1}{3} x^{2}+\frac{4}{3} x .
$$

What was the maximum height reached by the frog?

Since f is a quadratic with $a=-\frac{1}{3}<0$, the maximum height of the frog's jump is found by identifying the y-coordinate of the parabola's vertex. To do this note that $a=-\frac{1}{3}, b=\frac{4}{3}$ and $c=0$. First, we find the $x-$ coordinate by using $-\frac{b}{2 a}$.

$$
\begin{aligned}
x & =-\frac{b}{2 a} \\
& =-\frac{\frac{4}{3}}{2\left(-\frac{1}{3}\right)} \\
& =-\frac{\frac{4}{3}}{-\frac{2}{3}} \\
& =2
\end{aligned}
$$

Next, we will have the maximum height once we find $f(2)$.

$$
\begin{aligned}
f(2) & =-\frac{1}{3}(2)^{2}+\frac{4}{3}(2) \\
& =-\frac{1}{3}(4)+\frac{8}{3} \\
& =-\frac{4}{3}+\frac{8}{3} \\
& =\frac{4}{3} .
\end{aligned}
$$

Maximum height of frog's jump $=\frac{4}{3} \mathrm{ft}$
3. A ball is thrown directly upward from an initial height of 50 feet. If the height, in feet, of the ball after t seconds is given by

$$
f(t)=-16 t^{2}+40 t+50,
$$

find the maximum height reached by the ball.

Since f is a quadratic with $a=-16<0$, the $f(t)$ coordinate of the parabola's vertex will identify the maximum height. To find the t-coordinate of the vertex, we use $t=-\frac{b}{2 a}$ where $a=-16$ and $b=40$.

$$
\begin{aligned}
t & =-\frac{b}{2 a} \\
& =-\frac{40}{2(-16)} \\
& =-\frac{40}{-32} \\
& =\frac{5}{4}
\end{aligned}
$$

To find the maximum, we need to evaluate $f\left(\frac{5}{4}\right)$.

$$
\begin{aligned}
f\left(\frac{5}{4}\right) & =-16\left(\frac{5}{4}\right)^{2}+40\left(\frac{5}{4}\right)+50 \\
& =-16\left(\frac{25}{16}\right)+50+50 \\
& =-25+100 \\
& =75
\end{aligned}
$$

$$
\text { Maximum height of ball }=75 \text { feet }
$$

4. A toy rocket is launched of the top of a 150 foot cliff. If the height, in feet, of the rocket t seconds after liftoff is given by

$$
f(t)=-16 t^{2}+288 t+150
$$

find the maximum height of the rocket and the time it reaches its maximum height.

Since f is a quadratic with $a=-16<0$, the t-coordinate of the parabola's vertex will identify the time the rocket reaches its maximum height and the $f(t)$ coordinate of the vertex will give the maximum height. We first find the time t by using $t=-\frac{b}{2 a}$ where $a=-16$ and $b=288$.

$$
\begin{aligned}
t & =-\frac{b}{2 a} \\
& =-\frac{288}{2(-16)} \\
& =-\frac{288}{-32} \\
& =9
\end{aligned}
$$

Next, to find the maximum height, we evaluate $f(9)$.

$$
\begin{aligned}
f(9) & =-16(9)^{2}+288(9)+150 \\
& =-16(81)+2592+150 \\
& =-1296+2592+150 \\
& =1446 .
\end{aligned}
$$

$$
\text { Time to reach max height }=9 \text { seconds }
$$

$$
\text { Maximum height of rocket }=1446 \mathrm{ft}
$$

