Definitions:

- Quadratic function: is a function that can be written in the form

$$
f(x)=a x^{2}+b x+c
$$

where a, b, and c are real numbers and $a \neq 0$.

- Parabola: The graph of a squaring function is called a parabola. It is a U-shaped graph.
- Vertex of a parabola: The point on the parabola where the graph changes direction. It is the lowest point if $a>0$, and it is the highest point if $a<0$.

Important Properties:

- Standard form of a quadratic function: A quadratic function $f(x)=a x^{2}+b x+c$ can be expressed in the standard form

$$
f(x)=a(x-h)^{2}+k
$$

by completing the square.

- Once in standard form, the vertex is given by (h, k).
- The parabola opens up if $a>0$ and opens down if $a<0$.

Steps to put quadratic function in standard form:

1. Make sure coefficient on x^{2} is 1 . If the leading term is $a x^{2}$, where $a \neq 1$, then factor a out of each x term.
2. Next, take one-half the coefficient of x and square it. In other words,

$$
\left(\frac{1}{2} \cdot \text { coefficient of } x\right)^{2}
$$

3. Add the result of step 2 inside the parenthesis.
4. In order not to change the problem you must subtract ($a \cdot$ result of step 2) outside the parenthesis.
5. Factor the polynomial in parenthesis as a perfect square and simplify any constants.

Common Mistakes to Avoid:

- When performing Step 4 above, do NOT forget to multiply the result of step 2 by the a that was factored out.

PROBLEMS

Express the quadratic function in standard form. Identify vertex.

1. $f(x)=x^{2}+4 x-5$

$$
\begin{aligned}
& f(x)=x^{2}+4 x-5 \\
& \left(\frac{1}{2} \cdot 4\right)^{2}=2^{2}=4 \\
& f(x)=\left(x^{2}+4 x+4\right)-5-4 \\
& =(x+2)^{2}-9 \\
& f(x)=(x+2)^{2}-9 \\
& \\
& \text { Vertex }=(-2,-9)
\end{aligned}
$$

2. $f(x)=x^{2}-6 x+1$

$$
\begin{aligned}
& f(x)=x^{2}-6 x+1 \\
& \left(\frac{1}{2} \cdot-6\right)^{2}=(-3)^{2}=9 \\
& f(x)=\left(x^{2}-6 x+9\right)+1-9 \\
& =(x-3)^{2}-8 \\
& \\
& f(x)=(x-3)^{2}-8 \\
& \\
& \text { Vertex }=(3,-8)
\end{aligned}
$$

3. $f(x)=-x^{2}+10 x-2$

Before we complete the square, we need to factor -1 from each x term.

$$
\begin{aligned}
f(x) & =-x^{2}+10 x-2 \\
& =-\left(x^{2}-10 x\right)-2 \\
& \left(\frac{1}{2} \cdot-10\right)^{2}=(-5)^{2}=25 \\
f(x) & =-\left(x^{2}-10 x+25\right)-2-(-1 \cdot 25) \\
& =-\left(x^{2}-10 x+25\right)-2-(-25) \\
& =-\left(x^{2}-10 x+25\right)-2+25 \\
& =-(x-5)^{2}+23
\end{aligned}
$$

$$
f(x)=-(x-5)^{2}+23
$$

$$
\text { Vertex }=(5,23)
$$

4. $f(x)=2 x^{2}+8 x-1$

Before we can complete the square, we need to factor a 2 from each x term.

$$
\begin{aligned}
f(x) & =2 x^{2}+8 x-1 \\
& =2\left(x^{2}+4 x\right)-1 \\
& \left(\frac{1}{2} \cdot 4\right)^{2}=2^{2}=4 \\
f(x) & =2\left(x^{2}+4 x+4\right)-1-(2 \cdot 4) \\
& =2\left(x^{2}+4 x+4\right)-1-8 \\
& =2(x+2)^{2}-9
\end{aligned}
$$

$$
f(x)=2(x+2)^{2}-9
$$

$$
\text { Vertex }=(-2,-9)
$$

5. $f(x)=3 x^{2}-12 x-10$

Before we complete the square, we must factor 3 out of each x term.

$$
\begin{aligned}
f(x) & =3 x^{2}-12 x-10 \\
& =3\left(x^{2}-4 x \quad\right)-10 \\
& \left(\frac{1}{2} \cdot-4\right)^{2}=(-2)^{2}=4 \\
f(x) & =3\left(x^{2}-4 x+4\right)-10-(3 \cdot 4) \\
& =3\left(x^{2}-4 x+4\right)-10-12 \\
& =3(x-2)^{2}-22
\end{aligned}
$$

$$
f(x)=3(x-2)^{2}-22
$$

$$
\text { Vertex }=(2,-22)
$$

6. $f(x)=-4 x^{2}-8 x+3$

Before we can complete the square, we need to factor -4 from each x term.

$$
\begin{aligned}
f(x) & =-4 x^{2}-8 x+3 \\
& =-4\left(x^{2}+2 x\right)+3 \\
& \left(\frac{1}{2} \cdot 2\right)^{2}=1^{2}=1 \\
f(x) & =-4\left(x^{2}+2 x+1\right)+3-(-4 \cdot 1) \\
& =-4\left(x^{2}+2 x+1\right)+3-(-4) \\
& =-4\left(x^{2}+2 x+1\right)+3+4 \\
& =-4(x+1)^{2}+7
\end{aligned}
$$

$$
f(x)=-4(x+1)^{2}+7
$$

$$
\text { Vertex }=(-1,7)
$$

7. $f(x)=5 x^{2}+5 x+8$

Before we can complete the square we need to factor 5 from each x term.

$$
\begin{aligned}
& f(x)=5 x^{2}+5 x+8 \\
&=5\left(x^{2}+x\right)+8 \\
&\left(\frac{1}{2} \cdot 1\right)=\left(\frac{1}{2}\right)^{2}=\frac{1}{4} \\
& f(x)=5\left(x^{2}+x+\frac{1}{4}\right)+8-\left(5 \cdot \frac{1}{4}\right) \\
&=5\left(x^{2}+x+\frac{1}{4}\right)+8-\frac{5}{4} \\
&=5\left(x+\frac{1}{2}\right)^{2}+\frac{27}{4} \\
& f(x)=5\left(x+\frac{1}{2}\right)^{2}+\frac{27}{4} \\
& \text { Vertex }=\left(-\frac{1}{2}, \frac{27}{4}\right) \\
&
\end{aligned}
$$

