MATH 11011

EXPRESSING A QUADRATIC FUNCTION IN STANDARD FORM

Definitions:

• Quadratic function: is a function that can be written in the form

$$f(x) = ax^2 + bx + c$$

where a, b, and c are real numbers and $a \neq 0$.

- Parabola: The graph of a squaring function is called a parabola. It is a U-shaped graph.
- Vertex of a parabola: The point on the parabola where the graph changes direction. It is the lowest point if a > 0, and it is the highest point if a < 0.

Important Properties:

• Standard form of a quadratic function: A quadratic function $f(x) = ax^2 + bx + c$ can be expressed in the standard form

$$f(x) = a(x-h)^2 + k$$

by completing the square.

- Once in standard form, the vertex is given by (h, k).
- The parabola opens up if a > 0 and opens down if a < 0.

Steps to put quadratic function in standard form:

- 1. Make sure coefficient on x^2 is 1. If the leading term is ax^2 , where $a \neq 1$, then factor a out of each x term.
- 2. Next, take one-half the coefficient of x and square it. In other words,

$$\left(\frac{1}{2} \cdot \text{coefficient of } x\right)^2$$
.

- 3. Add the result of step 2 inside the parenthesis.
- 4. In order not to change the problem you must subtract $(a \cdot \text{result of step } 2)$ outside the parenthesis.
- 5. Factor the polynomial in parenthesis as a perfect square and simplify any constants.

Common Mistakes to Avoid:

• When performing Step 4 above, do NOT forget to multiply the result of step 2 by the a that was factored out.

PROBLEMS

Express the quadratic function in standard form. Identify vertex.

- 1. $f(x) = x^2 + 4x 5$ $f(x) = x^2 + 4x - 5$ $\left(\frac{1}{2} \cdot 4\right)^2 = 2^2 = 4$ $f(x) = (x^2 + 4x + 4) - 5 - 4$ $= (x + 2)^2 - 9$ $f(x) = (x + 2)^2 - 9$ Vertex = (-2, -9)
- 2. $f(x) = x^2 6x + 1$

$$f(x) = x^{2} - 6x + 1$$

$$\left(\frac{1}{2} \cdot -6\right)^{2} = (-3)^{2} = 9$$

$$f(x) = (x^{2} - 6x + 9) + 1 - 9$$

$$= (x - 3)^{2} - 8$$

$$\boxed{f(x) = (x - 3)^{2} - 8}$$

$$\boxed{\text{Vertex} = (3, -8)}$$

3. $f(x) = -x^2 + 10x - 2$

Before we complete the square, we need to factor -1 from each x term.

$$f(x) = -x^{2} + 10x - 2$$

= $-(x^{2} - 10x) - 2$
 $\left(\frac{1}{2} \cdot -10\right)^{2} = (-5)^{2} = 25$
 $f(x) = -(x^{2} - 10x + 25) - 2 - (-1 \cdot 25)$
= $-(x^{2} - 10x + 25) - 2 - (-25)$
= $-(x^{2} - 10x + 25) - 2 + 25$
= $-(x - 5)^{2} + 23$

$$f(x) = -(x-5)^2 + 23$$
Vertex = (5,23)

4.
$$f(x) = 2x^2 + 8x - 1$$

Before we can complete the square, we need to factor a 2 from each x term.

$$f(x) = 2x^{2} + 8x - 1$$

= 2(x² + 4x) - 1
 $\left(\frac{1}{2} \cdot 4\right)^{2} = 2^{2} = 4$
$$f(x) = 2(x^{2} + 4x + 4) - 1 - (2 \cdot 4)$$

= 2(x² + 4x + 4) - 1 - 8
= 2(x + 2)^{2} - 9
$$\boxed{f(x) = 2(x + 2)^{2} - 9}$$

$$\boxed{Vertex = (-2, -9)}$$

5. $f(x) = 3x^2 - 12x - 10$

Before we complete the square, we must factor 3 out of each x term.

$$f(x) = 3x^{2} - 12x - 10$$

= 3(x² - 4x) - 10
$$\left(\frac{1}{2} \cdot -4\right)^{2} = (-2)^{2} = 4$$

$$f(x) = 3(x^{2} - 4x + 4) - 10 - (3 \cdot 4)$$

= 3(x² - 4x + 4) - 10 - 12
= 3(x - 2)^{2} - 22
$$\boxed{f(x) = 3(x - 2)^{2} - 22}$$

 $\overline{\text{Vertex}} = (2, -22)$

6.
$$f(x) = -4x^2 - 8x + 3$$

Before we can complete the square, we need to factor -4 from each x term.

$$f(x) = -4x^{2} - 8x + 3$$

= -4(x² + 2x) + 3
$$\left(\frac{1}{2} \cdot 2\right)^{2} = 1^{2} = 1$$

$$f(x) = -4(x^{2} + 2x + 1) + 3 - (-4 \cdot 1)$$

= -4(x² + 2x + 1) + 3 - (-4)
= -4(x^{2} + 2x + 1) + 3 + 4
= -4(x + 1)^{2} + 7

$$f(x) = -4(x+1)^2 + 7$$
Vertex = (-1,7)

7. $f(x) = 5x^2 + 5x + 8$

Before we can complete the square we need to factor 5 from each x term.

$$f(x) = 5x^{2} + 5x + 8$$

= 5(x² + x) + 8
$$\left(\frac{1}{2} \cdot 1\right) = \left(\frac{1}{2}\right)^{2} = \frac{1}{4}$$

$$f(x) = 5\left(x^{2} + x + \frac{1}{4}\right) + 8 - \left(5 \cdot \frac{1}{4}\right)$$

= 5 $\left(x^{2} + x + \frac{1}{4}\right) + 8 - \frac{5}{4}$
= 5 $\left(x + \frac{1}{2}\right)^{2} + \frac{27}{4}$
$$f(x) = 5\left(x + \frac{1}{2}\right)^{2} + \frac{27}{4}$$

Vertex = $\left(-\frac{1}{2}, \frac{27}{4}\right)$