Definition:

- Quadratic-Type Expression: is an expression of the form $a u^{2}+b u+c$ where u is an algebraic expression. For example, the following are all quadratic-type expressions:

$$
x^{4}+5 x^{2}+6, \quad(x-3)^{2}-2(x-3)-3, \quad \quad x^{8}-7 x^{4}-18
$$

Important Properties:

- Zero Product Property: If a and b are real numbers and $a \cdot b=0$, then $a=0$ or $b=0$.
- If you recognize how the expression factors in its original form, then do so. If not, then use a u substitution to create a quadratic that is easier to factor. For example, for $x^{4}+5 x^{2}+6$, if we let $u=x^{2}$ then we have

$$
x^{4}+5 x^{2}+6=u^{2}+5 u+6=(u+3)(u+2)=\left(x^{2}+2\right)\left(x^{2}+3\right) .
$$

- Only use the substitution if it helps you factor the expression.

Common Mistakes to Avoid:

- If you use the u substitution, you must substitute back to the original variable. So, if the original problem is in terms of x, make sure that your answer is also in terms of x.
- Although you can raise both sides of an equation to the same power without changing the solutions, you can NOT raise each term to the same power.
- Remember that whenever you have the even root of a positive number, we get two answers: one positive and one negative. For example, if $x^{4}=16$ then by taking the 4 th root of both sides we get $x=2$ AND $x=-2$. Do NOT forget the negative answer when working with even roots.
- Do NOT attach a \pm when working with odd roots. When you take the odd root of a number, you get only one solution.
- Make sure that the variable is isolated before raising both sides to the same power. For example,

$$
\left(4 x^{2 / 3}\right)^{3 / 2} \neq 4 x
$$

PROBLEMS

Solve for x in each of the following equations.

1. $x^{4}+15 x^{2}-16=0$

$$
\begin{array}{r}
x^{4}+15 x^{2}-16=0 \\
\left(x^{2}-1\right)\left(x^{2}+16\right)=0 \\
(x-1)(x+1)\left(x^{2}+16\right)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
x^{2}+16=0
$$

$$
x^{2} \neq-16
$$

$$
x=1, \quad x=-1
$$

OR (for an alternative way)
Letting $u=x^{2}$, we get

$$
\begin{array}{r}
x^{4}+15 x^{2}-16=0 \\
u^{2}+15 u-16=0 \\
(u+16)(u-1)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
u+16 & =0 \\
u & =-16 \\
x^{2} & \neq-16
\end{aligned}
$$

$$
\begin{aligned}
u-1 & =0 \\
u & =1 \\
x^{2} & =1 \\
\sqrt{x^{2}} & =\sqrt{1} \\
x & = \pm 1
\end{aligned}
$$

$$
x=1, \quad x=-1
$$

2. $9 x^{4}-14 x^{2}+5=0$

$$
\begin{array}{r}
9 x^{4}-14 x^{2}+5=0 \\
\left(9 x^{2}-5\right)\left(x^{2}-1\right)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{array}{rlr}
9 x^{2}-5 & =0 \\
9 x^{2} & =5 & x^{2}-1=0 \\
x^{2} & =\frac{5}{9} & x^{2}=1 \\
\sqrt{x^{2}} & =\sqrt{\frac{5}{9}} \\
x & = \pm \frac{\sqrt{5}}{3} & x= \pm 1 \\
& x= \pm \frac{\sqrt{5}}{3}, & x= \pm 1
\end{array}
$$

OR (for an alternative way)

Letting $u=x^{2}$, we get

$$
\begin{array}{r}
9 x^{4}-14 x^{2}+5=0 \\
9 u^{2}-14 u+5=0 \\
(9 u-5)(u-1)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
9 u-5 & =0 \\
9 u & =5 \\
u & =\frac{5}{9} \\
x^{2} & =\frac{5}{9} \\
\sqrt{x^{2}} & =\sqrt{\frac{5}{9}} \\
x & = \pm \frac{\sqrt{5}}{3}
\end{aligned}
$$

$$
\begin{aligned}
u-1 & =0 \\
u & =1 \\
x^{2} & =1 \\
\sqrt{x^{2}} & =\sqrt{1} \\
x & = \pm 1
\end{aligned}
$$

$$
x= \pm \frac{\sqrt{5}}{3}, \quad x= \pm 1
$$

3. $x^{-2}-9 x^{-1}-10=0$

$$
\begin{array}{r}
x^{-2}-9 x^{-1}-10=0 \\
\left(x^{-1}-10\right)\left(x^{-1}+1\right)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
x^{-1}-10 & =0 & & \\
x^{-1} & =10 & & x^{-1}+1
\end{aligned}=0
$$

OR (for an alternative way)
Letting $u=x^{-1}$, we obtain

$$
\begin{array}{r}
x^{-2}-9 x^{-1}-10=0 \\
u^{2}-9 u-10=0 \\
(u-10)(u+1)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
u-10 & =0 \\
u & =10 \\
x^{-1} & =10 \\
\frac{1}{x} & =10 \\
x & =\frac{1}{10}
\end{aligned}
$$

$u+1$	$=0$
u	$=-1$
x^{-1}	$=-1$
$\frac{1}{x}$	$=-1$
x	$=-1$

$$
x=\frac{1}{10}, \quad x=-1
$$

4. $x^{2 / 3}-2 x^{1 / 3}-8=0$

$$
\begin{array}{r}
x^{2 / 3}-2 x^{1 / 3}-8=0 \\
\left(x^{1 / 3}-4\right)\left(x^{1 / 3}+2\right)=0
\end{array}
$$

Setting each factor equal to zero, we obtain

$$
\begin{aligned}
x^{1 / 3}-4 & =0 \\
x^{1 / 3} & =4 \\
\left(x^{1 / 3}\right)^{3} & =4^{3} \\
x & =64
\end{aligned}
$$

$$
\begin{aligned}
x^{1 / 3}+2 & =0 \\
x^{1 / 3} & =-2 \\
\left(x^{1 / 3}\right)^{3} & =(-2)^{3} \\
x & =-8
\end{aligned}
$$

$$
x=64, \quad x=-8
$$

OR (for an alternative way)
Letting $u=x^{1 / 3}$, we get

$$
\begin{array}{r}
x^{2 / 3}-2 x^{1 / 3}-8=0 \\
u^{2}-2 u-8=0 \\
(u-4)(u+2)=0
\end{array}
$$

Setting each factor equal to zero, we obtain

$$
\begin{aligned}
u-4 & =0 \\
u & =4 \\
x^{1 / 3} & =4 \\
\left(x^{1 / 3}\right)^{3} & =4^{3} \\
x & =64
\end{aligned}
$$

$$
\begin{aligned}
u+2 & =0 \\
u & =-2 \\
x^{1 / 3} & =-2 \\
\left(x^{1 / 3}\right)^{3} & =(-2)^{3} \\
x & =-8
\end{aligned}
$$

$$
x=64, \quad x=-8
$$

5. $x^{1 / 2}+6=5 x^{1 / 4}$

First, we will move everything to one side and factor completely.

$$
\begin{aligned}
x^{1 / 2}+6 & =5 x^{1 / 4} \\
x^{1 / 2}-5 x^{1 / 4}+6 & =0 \\
\left(x^{1 / 4}-3\right)\left(x^{1 / 4}-2\right) & =0
\end{aligned}
$$

Setting each factor to zero, we get

$$
\begin{aligned}
x^{1 / 4}-3 & =0 \\
x^{1 / 4} & =3 \\
\left(x^{1 / 4}\right)^{4} & =3^{4} \\
x & =81
\end{aligned}
$$

$$
\begin{aligned}
x^{1 / 4}-2 & =0 \\
x^{1 / 4} & =2 \\
\left(x^{1 / 4}\right)^{4} & =2^{4} \\
x & =16
\end{aligned}
$$

Because we raised both sides to an even power, we must check our answers in the original equation.
Checking: $x=81$
Checking: $x=16$

$$
\begin{aligned}
(81)^{1 / 2}+6 & =5(81)^{1 / 4} \\
\sqrt{81}+6 & =5 \sqrt[4]{81} \\
9+6 & =5(3) \\
15 & =15 \star
\end{aligned}
$$

$$
\begin{aligned}
(16)^{1 / 2}+6 & =5(16)^{1 / 4} \\
\sqrt{16}+6 & =5 \sqrt[4]{16} \\
4+6 & =5(2) \\
10 & =10 \star
\end{aligned}
$$

$$
x=81, \quad x=16
$$

6. $x^{1 / 3}+2 x^{1 / 6}=3$

We first need to move everything to one side before we can factor.

$$
\begin{aligned}
x^{1 / 3}+2 x^{1 / 6} & =3 \\
x^{1 / 3}+2 x^{1 / 6}-3 & =0 \\
\left(x^{1 / 6}+3\right)\left(x^{1 / 6}-1\right) & =0
\end{aligned}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
x^{1 / 6}+3 & =0 \\
x^{1 / 6} & =-3 \\
\left(x^{1 / 6}\right)^{6} & =(-3)^{6} \\
x & =729
\end{aligned}
$$

$$
\begin{aligned}
x^{1 / 6}-1 & =0 \\
x^{1 / 6} & =1 \\
\left(x^{1 / 6}\right)^{6} & =(1)^{6} \\
x & =1
\end{aligned}
$$

Because we raised both sides to an even power, we need to check our answers in the original equation.
Check: $x=729$

Check: $x=1$

$$
\begin{aligned}
\sqrt[3]{729}+2 \sqrt[6]{729} & =3 \\
9+2(3) & =3 \\
15 & \neq 3
\end{aligned}
$$

$$
(1)^{1 / 3}+2(1)^{1 / 6}=3
$$

$$
1+2=3
$$

$$
3=3 \star
$$

Since $x=729$ does not check, it cannot be a solution.

$$
x=1
$$

OR (for an alternative way)
Letting $u=x^{1 / 6}$, we get

$$
\begin{aligned}
x^{1 / 3}+2 x^{1 / 6} & =3 \\
x^{1 / 3}+2 x^{1 / 6}-3 & =0 \\
u^{2}+2 u-3 & =0 \\
(u+3)(u-1) & =0
\end{aligned}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
u+3 & =0 \\
u & =-3 \\
x^{1 / 6} & =-3 \\
\left(x^{1 / 6}\right)^{6} & =(-3)^{6} \\
x & =729
\end{aligned}
$$

$$
\begin{aligned}
u-1 & =0 \\
u & =1 \\
x^{1 / 6} & =1 \\
\left(x^{1 / 6}\right)^{6} & =(1)^{6} \\
x & =1
\end{aligned}
$$

Once again, we need to check our answers since we raised both sides to an even power. See check above.

$$
x=1
$$

7. $\left(3-x^{1 / 2}\right)^{2}-10\left(3-x^{1 / 2}\right)+21=0$

Notice that this is a quadratic-type equation with $u=3-x^{1 / 2}$. Therefore,

$$
\begin{array}{r}
\left(3-x^{1 / 2}\right)^{2}-10\left(3-x^{1 / 2}\right)+21=0 \\
u^{2}-10 u+21=0 \\
(u-7)(u-3)=0
\end{array}
$$

Setting each factor equal to zero, we get

$$
\begin{array}{rlr}
u-7 & =0 \\
u & =7 \\
3-x^{1 / 2} & =7 \\
-x^{1 / 2} & =4 \\
x^{1 / 2} & =-1 & u-3
\end{array}=0
$$

Since we raised both sides to an even power, we must check our answers in the original equation.

$$
\begin{aligned}
\left(3-1^{1 / 2}\right)^{2}-10\left(3-1^{1 / 2}\right)+21 & =0 \\
(3-1)^{2}-10(3-1)+21 & =0 \\
2^{2}-10(2)+21 & =0 \\
4-20+21 & =0 \\
5 & \neq 0
\end{aligned}
$$

Check: $x=0$

$$
\begin{aligned}
\left(3-0^{1 / 2}\right)^{2}-10\left(3-0^{1 / 2}\right)+21 & =0 \\
(3-0)^{2}-10(3-0)+21 & =0 \\
3^{2}-10(3)+21 & =0 \\
9-30+21 & =0 \\
0 & =0 \star
\end{aligned}
$$

Since $x=1$ does not check in the original equation it cannot be a solution.

$$
x=0
$$

