Definition:

- Quadratic Equation: is an equation that can be written in the form

$$
a x^{2}+b x+c=0,
$$

where a, b, and c are real numbers, $a \neq 0$.

Steps for solving a quadratic equation by completing the square :

1. Isolate the constant on one side.
2. Make sure that the coefficient in front of the squared term is a positive one. If it is not, divide every term of the equation by this coefficient.
3. Once the coefficient on the squared term is a positive one, take one-half the coefficient of x and square this result. Namely, $\left(\frac{1}{2} \cdot \text { coeff of } x\right)^{2}$.
4. Add the result of Step 3 to both sides.
5. Factor the side containing the variables as a perfect square.

6 . Solve the resulting equation using the square root property.

Important Properties:

- Square Root Property: If c is a positive number and if $x^{2}=c$, then

$$
x=\sqrt{c} \quad \text { or } \quad x=-\sqrt{c} \text {. }
$$

(This can be written in one statement as $\pm \sqrt{c}$.) In other words, when solving a quadratic equation by the square root property, we want both the positive and negative square roots.

- Completing the square can be used to solve any quadratic equation.

Common Mistakes to Avoid:

- While completing the square, do not proceed to step three until the coefficient on the squared term is a POSITIVE one.
- Do NOT forget the \pm when taking square roots.
- If the solution can be simplified, you must do so. For example, $x=-5 \pm 2$ becomes $x=-5+2=-3$ and $x=-5-2=-7$.

PROBLEMS

Solve the following equations by completing the square.

1. $x^{2}+4 x=5$

$$
\begin{aligned}
x^{2}+4 x & =5 \\
\left(\frac{1}{2} \cdot 4\right)^{2} & =(2)^{2}=4 \\
x^{2}+4 x+4 & =5+4 \\
(x+2)^{2} & =9 \\
\sqrt{(x+2)^{2}} & =\sqrt{9} \\
x+2 & = \pm 3 \\
x & =-2 \pm 3 \\
x & =-2+3=1 \\
x & =-2-3=-5 \\
x=1, & x=-5
\end{aligned}
$$

2. $x^{2}+4 x+1=0$

$$
\begin{aligned}
& x^{2}+4 x+1=0 \\
& x^{2}+4 x=-1 \\
&\left(\frac{1}{2} \cdot 4\right)^{2}=(2)^{2}=4 \\
& x^{2}+4 x+4=-1+4 \\
&(x+2)^{2}=3 \\
& \sqrt{(x+2)^{2}}=\sqrt{3} \\
& x+2= \pm \sqrt{3} \\
& x=-2 \pm \sqrt{3} \\
& \\
& \hline x=-2+\sqrt{3}, \quad x=-2-\sqrt{3} \\
& \hline
\end{aligned}
$$

3. $x^{2}-8 x-5=0$

$$
\begin{aligned}
x^{2}-8 x-5 & =0 \\
x^{2}-8 x & =5 \\
\left(\frac{1}{2} \cdot-8\right)^{2} & =(-4)^{2}=16 \\
x^{2}-8 x+16 & =5+16 \\
(x-4)^{2} & =21 \\
\sqrt{(x-4)^{2}} & =\sqrt{21} \\
x-4 & = \pm \sqrt{21} \\
x & =4 \pm \sqrt{21} \\
x=4+\sqrt{21}, & x=4-\sqrt{21}
\end{aligned}
$$

4. $2 x^{2}-12 x+14=0$

$$
\begin{aligned}
& 2 x^{2}-12 x+14=0 \\
& 2 x^{2}-12 x=-14 \\
& x^{2}-6 x=-7 \\
&\left(\frac{1}{2} \cdot-6\right)^{2}=(-3)^{2}=9 \\
& x^{2}-6 x+9=-7+9 \\
&(x-3)^{2}=2 \\
& \sqrt{(x-3)^{2}}=\sqrt{2} \\
& x-3= \pm \sqrt{2} \\
& x=3 \pm \sqrt{2} \\
& \\
& x=3+\sqrt{2}, \quad x=3-\sqrt{2}
\end{aligned}
$$

5. $4 x^{2}+32 x-3=0$

$$
\begin{aligned}
& 4 x^{2}+32 x-3=0 \\
& 4 x^{2}+32 x=3 \\
& x^{2}+8 x=\frac{3}{4} \\
&\left(\frac{1}{2} \cdot 8\right)^{2}=(4)^{2}=16 \\
& x^{2}+8 x+16=\frac{3}{4}+16 \\
&(x+4)^{2}=\frac{69}{4} \\
& \sqrt{(x+4)^{2}}=\sqrt{\frac{69}{4}} \\
& x+4= \pm \frac{\sqrt{69}}{2} \\
& x=-4 \pm \frac{\sqrt{69}}{2} \\
& x=-4+\frac{\sqrt{69}}{2}, \quad x=-4-\frac{\sqrt{69}}{2} \\
& x
\end{aligned}
$$

$$
\begin{aligned}
5 x^{2}+5 x-15 & =0 \\
5 x^{2}+5 x & =15 \\
x^{2}+x & =3
\end{aligned}
$$

$$
\left(\frac{1}{2} \cdot 1\right)^{2}=\left(\frac{1}{2}\right)^{2}=\frac{1}{4}
$$

$$
x^{2}+x+\frac{1}{4}=3+\frac{1}{4}
$$

$$
\left(x+\frac{1}{2}\right)^{2}=\frac{13}{4}
$$

$$
\sqrt{\left(x+\frac{1}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
$$

$$
x+\frac{1}{2}= \pm \frac{\sqrt{13}}{2}
$$

$$
x=-\frac{1}{2} \pm \frac{\sqrt{13}}{2}
$$

$$
x=-\frac{1}{2}+\frac{\sqrt{13}}{2}, \quad x=-\frac{1}{2}-\frac{\sqrt{13}}{2}
$$

7. $3 x^{2}+7 x=4$

$$
\begin{aligned}
& 3 x^{2}+7 x=4 \\
& x^{2}+\frac{7}{3} x=\frac{4}{3} \\
&\left(\frac{1}{2} \cdot \frac{7}{3}\right)^{2}=\left(\frac{7}{6}\right)^{2}=\frac{49}{36} \\
& x^{2}+\frac{7}{3} x+\frac{49}{36}=\frac{4}{3}+\frac{49}{36} \\
& x^{2}+\frac{7}{3} x+\frac{49}{36}=\frac{48}{36}+\frac{49}{36} \\
& x^{2}+\frac{7}{3} x+\frac{49}{36}=\frac{97}{36} \\
&\left(x+\frac{7}{6}\right)^{2}=\frac{97}{36} \\
& \sqrt{\left(x+\frac{7}{6}\right)^{2}}=\sqrt{\frac{97}{36}} \\
& x+\frac{7}{6}= \pm \frac{\sqrt{97}}{6} \\
& x=-\frac{7}{6} \pm \frac{\sqrt{97}}{6} \\
& x=-\frac{7}{6}+\frac{\sqrt{97}}{6}, x=-\frac{7}{6}-\frac{\sqrt{97}}{6} \\
& \hline x=
\end{aligned}
$$

