Definition:

- Rational exponent: If m and n are positive integers with m / n in lowest terms, then

$$
a^{m / n}=\sqrt[n]{a^{m}}=(\sqrt[n]{a})^{m}
$$

(If n is even then we require $a \geq 0$.) In other words, in a rational exponent, the numerator indicates the power and the denominator indicates the root. For example,

$$
8^{2 / 3}=(\sqrt[3]{8})^{2}=(2)^{2}=4
$$

Important Properties:

- To solve $a x^{m / n}+b=c$: First, isolate the variable. Then, raise both sides of the expression to the reciprocal of the exponent since $\left(x^{m / n}\right)^{n / m}=x$. Finally, solve for the variable.
- To solve $a x^{m / n}+b x^{m / 2 n}+c=0$: Try to factor and use the zero product property.
- Zero Product Property: If a and b are real numbers and $a \cdot b=0$, then $a=0$ or $b=0$.
- Whenever you raise both sides to an even power you must check your "solution" in the original equation. Sometimes extraneous solutions occur.

Common Mistakes to Avoid:

- Although you can raise both sides of an equation to the same power without changing the solutions, you can NOT raise each term to the same power.
- Remember that whenever you have the even root of a positive number, we get two answers: one positive and one negative. For example, if $x^{4}=16$ then by taking the 4th root of both sides we get $x=2$ AND $x=-2$. Do NOT forget the negative answer when working with even roots.
- Do NOT attach a \pm when working with odd roots. When you take the odd root of a number, you get only one solution.
- Make sure that the variable is isolated before raising both sides to the same power. For example,

$$
\left(4 x^{2 / 3}\right)^{3 / 2} \neq 4 x
$$

PROBLEMS

Solve for x in each of the following equations.

1. $4 x^{2 / 3}-5=11$

First, we will isolate the variable.

$$
\begin{aligned}
4 x^{2 / 3}-5 & =11 \\
4 x^{2 / 3} & =16 \\
x^{2 / 3} & =4
\end{aligned}
$$

Next, we will raise both sides to the $3 / 2$ power.

$$
\begin{aligned}
&\left(x^{2 / 3}\right)^{3 / 2}=(4)^{3 / 2} \\
& x=4^{3 / 2} \\
& x=(\sqrt{4})^{3} \\
& x=(\pm 2)^{3} \\
& x= \pm 8 \\
& x=8, x=-8 \\
& \hline
\end{aligned}
$$

2. $x^{2 / 3}-2 x^{1 / 3}-8=0$

Notice that we are unable to isolate the variable. However, we do notice that this is a quadratic-type equation. Therefore,

$$
\begin{aligned}
x^{2 / 3}-2 x^{1 / 3}-8 & =0 \\
\left(x^{1 / 3}-4\right)\left(x^{1 / 3}+2\right) & =0
\end{aligned}
$$

Setting each factor equal to zero, we obtain

$$
\begin{aligned}
x^{1 / 3}-4 & =0 \\
x^{1 / 3} & =4 \\
\left(x^{1 / 3}\right)^{3} & =4^{3} \\
x & =64
\end{aligned}
$$

$$
x^{1 / 3}+2=0
$$

$$
x^{1 / 3}=-2
$$

$$
\left(x^{1 / 3}\right)^{3}=(-2)^{3}
$$

$$
x=-8
$$

$$
x=64, \quad x=-8
$$

OR (for an alternative way)
Letting $u=x^{1 / 3}$, we get

$$
\begin{array}{r}
x^{2 / 3}-2 x^{1 / 3}-8=0 \\
u^{2}-2 u-8=0 \\
(u-4)(u+2)=0
\end{array}
$$

Setting each factor equal to zero, we obtain

$$
\begin{array}{c|r}
u-4=0 & \begin{aligned}
u+2 & =0 \\
u & =4 \\
u & =-2 \\
x^{1 / 3} & =4 \\
\left(x^{1 / 3}\right)^{3} & =4^{3} \\
x & =64 \\
x^{1 / 3} & =-2 \\
\left(x^{1 / 3}\right)^{3} & =(-2)^{3} \\
x & =-8 \\
x=64, & x=-8
\end{aligned}
\end{array}
$$

3. $x^{4 / 3}-16=0$

First, we will isolate the variable. Then we will raise both sides to the $3 / 4$ power.

$$
\begin{aligned}
& x^{4 / 3}-16=0 \\
& x^{4 / 3}=16 \\
&\left(x^{4 / 3}\right)^{3 / 4}=16^{3 / 4} \\
& x=(\sqrt[4]{16})^{3} \\
& x=(\pm 2)^{3} \\
& x= \pm 8 \\
& x=8, x=-8 \\
&
\end{aligned}
$$

4. $3 x^{5 / 3}+96=0$

First, we will isolate the variable.

$$
\begin{aligned}
3 x^{5 / 3}+96 & =0 \\
3 x^{5 / 3} & =-96 \\
x^{5 / 3} & =-32
\end{aligned}
$$

Next, we will raise both sides to the $3 / 5$ power.

$$
\begin{aligned}
\left(x^{5 / 3}\right)^{3 / 5} & =(-32)^{3 / 5} \\
x & =(\sqrt[5]{-32})^{3} \\
x & =(-2)^{3} \\
x & =-8 \\
x & =-8
\end{aligned}
$$

5. $4(x+1)^{1 / 2}-5(x+1)^{3 / 2}+(x+1)^{5 / 2}=0$

First, we will factor this expression completely.

$$
\begin{aligned}
4(x+1)^{1 / 2}-5(x+1)^{3 / 2}+(x+1)^{5 / 2} & =0 \\
(x+1)^{1 / 2}\left[4-5(x+1)+(x+1)^{2}\right] & =0 \\
(x+1)^{1 / 2}\left[4-5 x-5+x^{2}+2 x+1\right] & =0 \\
(x+1)^{1 / 2}\left(x^{2}-3 x\right) & =0 \\
x(x+1)^{1 / 2}(x-3) & =0
\end{aligned}
$$

Setting each factor equal to zero, we obtain

$$
\left.x=0 \quad\left|\begin{array}{r|}
x-3=0 \\
x=3 \\
\end{array}\right| \begin{array}{r}
(x+1)^{1 / 2}=0 \\
{\left[(x+1)^{1 / 2}\right]^{2}}
\end{array}\left|\begin{array}{r}
\\
\\
x+1
\end{array}\right| \begin{array}{r}
2 \\
x
\end{array} \right\rvert\, \begin{aligned}
& =0
\end{aligned}
$$

If we check $x=-1$ by substituting back into our original equation, we find that $x=-1$ is a solution.

$$
x=0, \quad x=3, \quad x=-1
$$

6. $x^{1 / 2}+6=5 x^{1 / 4}$

Since we cannot isolate the variable, we will move everything to one side and factor completely.

$$
\begin{aligned}
x^{1 / 2}+6 & =5 x^{1 / 4} \\
x^{1 / 2}-5 x^{1 / 4}+6 & =0 \\
\left(x^{1 / 4}-3\right)\left(x^{1 / 4}-2\right) & =0
\end{aligned}
$$

Setting each factor equal to zero, we get

$$
\begin{aligned}
& x^{1 / 4}-3=0 \quad x^{1 / 4}-2=0 \\
& x^{1 / 4}=3 \\
& \left(x^{1 / 4}\right)^{4}=3^{4} \\
& x=81 \\
& x^{1 / 4}=2 \\
& \left(x^{1 / 4}\right)^{4}=2^{4} \\
& x=16
\end{aligned}
$$

Because we raised both sides to an even power, we must check our answers in the original equation.
$\underline{\text { Checking: } x=81}$

$$
\begin{aligned}
(81)^{1 / 2}+6 & =5(81)^{1 / 4} \\
\sqrt{81}+6 & =5 \sqrt[4]{81} \\
9+6 & =5(3) \\
15 & =15 \star
\end{aligned}
$$

Checking: $x=16$

$$
\begin{aligned}
(16)^{1 / 2}+6 & =5(16)^{1 / 4} \\
\sqrt{16}+6 & =5 \sqrt[4]{16} \\
4+6 & =5(2) \\
10 & =10 \star
\end{aligned}
$$

7. $(x-3)^{3 / 2}=27$

Notice that the quantity containing the rational exponent is already isolated. Therefore, raising both sides to the $2 / 3$ power, we get

$$
\begin{aligned}
& (x-3)^{3 / 2}=27 \\
& {\left[(x-3)^{3 / 2}\right]^{2 / 3}=27^{2 / 3}} \\
& x-3=27^{2 / 3} \\
& x-3=(\sqrt[3]{27})^{2} \\
& x-3=(3)^{2} \\
& x-3=9 \\
& x=12 \\
& x=12
\end{aligned}
$$

8. $(x-7)^{4}=16$

Notice that although this equation does not contain a rational exponent, to solve it we will raise both sides to the $1 / 4$ power.

$$
\begin{aligned}
(x-7)^{4} & =16 \\
{\left[(x-7)^{4}\right]^{1 / 4} } & =16^{1 / 4} \\
x-7 & =16^{1 / 4} \\
x-7 & =\sqrt[4]{16} \\
x-7 & = \pm 2 \\
x & =7 \pm 2
\end{aligned}
$$

Simplifying this last equation we get $x=7+2=9$ and $x=7-2=5$.

$$
x=9, \quad x=5
$$

9. $(x-3)^{2 / 5}=(4 x)^{1 / 5}$

Notice that we cannot solve this one by factoring. Therefore, we will first eliminate the denominator of the rational exponent by raising both sides to the 5 th power.

$$
\begin{aligned}
(x-3)^{2 / 5} & =(4 x)^{1 / 5} \\
{\left[(x-3)^{2 / 5}\right]^{5} } & =\left[\left(4 x^{1 / 5}\right]^{5}\right. \\
(x-3)^{2} & =4 x \\
x^{2}-6 x+9 & =4 x \\
x^{2}-10 x+9 & =0 \\
(x-9)(x-1) & =0
\end{aligned}
$$

Setting each factor equal to zero, we obtain

$$
\begin{array}{r}
x-9=0 \\
x=9
\end{array}
$$

$$
\begin{array}{r}
x-1=0 \\
x=1
\end{array}
$$

$$
x=9, \quad x=1
$$

