Transformations of functions:

- Vertical Shift: Suppose that $c>0$.
- The equation $y=f(x)+c$ shifts the graph of $y=f(x)$ up c units. (Adding a constant on the outside of a functions shifts the graph up.)
- The equation $y=f(x)-c$ shifts the graph of $y=f(x)$ down c units. (Subtracting a constant on the outside of a function shifts the graph down.)
- Horizontal Shift: Suppose that $c>0$.
- The equation $y=f(x+c)$ shifts the graph of $y=f(x)$ to the left c units. (Adding a constant inside the function shifts the graph left.)
- The equation $y=f(x-c)$ shifts the graph of $y=f(x)$ to the right c units. (Subtracting a constant inside the function shifts the graph right.)
- Reflections:
- The equation $y=-f(x)$ reflects the graph of $y=f(x)$ with respect to the x-axis. (Multiplying by a negative on the outside of a function flips the graph with respect to the x-axis.)
- The equation $y=f(-x)$ reflects the graph of $y=f(x)$ with respect to the the y-axis. (Multiplying by a negative inside the function flips the graph with respect to the y-axis.)
- Vertical Stretching and Shrinking:
- When $c>1$, the equation $y=c f(x)$ stretches the graph of $y=f(x)$ vertically by a factor of c. (Multiplying by a number, larger than one, on the outside of a function causes the graph to be stretched or narrowed by a factor of c.)
- When $0<c<1$, the equation $y=c f(x)$ shrinks the graph of $y=f(x)$ vertically by a factor of c. (Multiplying by a number, between zero and one, on the outside of a functions causes the graph to shrink or widen by a factor of c.)

Important Properties:

- When combining the transformations, first identify how every number affects the graph of f.

Common Mistakes to Avoid:

- Errors frequently occur with horizontal shifts. Remember if we add a constant inside a function, we shift left; if we subtract a constant inside a function, we shift right.
- When multiplying a function by a negative number, say $-c$, remember that the negative is a flip and the c is either a stretch or shrink (depending on its value).

PROBLEMS

1. Explain how the graph of g is obtained from the graph of f. Be specific!
(a) $f(x)=x^{2} ; \quad g(x)=(x-4)^{2}$

Since we are subtracting a constant inside the function, we need to shift the the graph of f right 4 units.

> | Shift right 4 units |
| :--- |

(b) $f(x)=x^{2} ; \quad g(x)=x^{2}-5$

Since we are subtracting a constant on the outside of the function, we need to shift the graph of f down 5 units.

Shift down 5 units

(c) $f(x)=\sqrt{x} ; \quad g(x)=3 \sqrt{x+1}$

Here, we have two transformations. First, since we are multiplying by 3 on the outside this is a vertical stretch by a factor of 3 . Adding 1 inside the function causes a shift of 1 unit to the left.

Shift left 1 unit, stretch by a factor of 3
(d) $f(x)=x^{3} ; \quad g(x)=\frac{1}{4}(x-5)^{3}+2$

Now we have three transformations. The multiplication of $\frac{1}{4}$ on the outside of the function is a vertical shrink by a factor of $\frac{1}{4}$. Subtracting 5 inside the function causes a shift right 5 units. Finally, adding 2 outside the function means moving the graph up 2 units.

Shift right 5 , up 2 , shrink by factor of $\frac{1}{4}$
(e) $f(x)=\sqrt[3]{x} ; \quad g(x)=-4 \sqrt[3]{x-2}+6$

Here we have four transformations. The multiplication of -4 on the outside of the function is a vertical stretch by a factor of 4 and a flip with respect to the x-axis. Adding 6 on the outside of the function is a shift up 6 units. Finally, subtracting 2 inside the function means moving the graph right 2 units.

Shift right 2, up 6, stretch, flip x-axis
2. The following functions are transformations of $y=|x|$. Determine each function's equation.

This graph has been shifted right 2 units (subtracting inside the function); shifted up 3 units (adding outside the function); and reflected or flipped across the x-axis (multiplying a negative outside the function).

$$
f(x)=-|x-2|+3
$$

\qquad

The graph has been shifted left 1 unit (adding inside the function); and shifted down 2 units (subtracting outside the function)

$$
f(x)=|x+1|-2
$$

The graph has been shifted left 2 units (adding inside the function); shifted up 4 units (adding outside the function); and reflected across the x-axis.

$$
f(x)=-|x+2|+4
$$

3. The graph of $y=f(x)$ is given below. Sketch the graph of $y=f(x-1)+2$.

The equation $y=f(x-1)+2$ will shift the graph to the right 1 unit and shift it up 2 units. The answer is given below.

4. The graph of $y=f(x)$ is given. Sketch the graph of $y=-f(x)+3$.

For this graph we need to reflect the graph with respect to the x-axis and then shift it up 3 units. The answer is given below.

