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Abstract

We prove new asymptotical stability and instability theorems for non autonomous
2 x 2 system of first-order differential equations by using a new version of the classical
Levinson asymptotic theorem for22 systems. The proof of this version is based on
the construction of approximate fundamental solution of the original system in the spe-
cial form with unknown phase function and the error estimates formulated in the terms
of generalized characteristic functional. In the case of constant matrix A generalized
characteristic functional turns to the usual characteristic polynomial and by choosing
phase functions as eigenvalues of the matrix A the error could be eliminated. As an-
other application we derive a transition probability formula for the two level atom in
the external electromagnetic field described by Schrodinger system.

Key words: Asymptotic stability, asymptotic solutions, characteristic function, fundamen-
tal matrix, integral representation, stability estimates, first order system of differential equa-
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1. Main Results

Consider the system of linear ordinary differential equations
ut)=At)ut), t>T, (1.1)
whereu(t) is a 2-vector function, and
= (20 )
is a 2x 2 matrix-function differentiable by e (T, ).
The rest state(t) = 0 of (1.1) is called stable if for ang > 0 there exist$(T,e) >0

such that ifju(T)| < 8(T,¢) then|u(t)| < € for allt > T. The rest state(t) = 0 of (1.1) is
called asymptotically stable if it is stable, and attractive:

lim u(t) =0 (1.2)
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for every solution of (1.1).

The usual method of investigation of asymptotic stability of differential equations is the
Lyapunov’s method that uses energy functions and Lyapunov stability theorems [2, 3, 5, 13,
6,8, 12, 14, 16, 17].

Here we continue the development of another approach started in [9, 10, 11]. This ap-
proach based on the usage of different asymptotic solutions [15] investigated in [7] (instead
of construction of energy functions in Lyapunov’s method), and the error estimates [4]. To
prove stability inequalities for system (1.1) we use a new version of the Levinson theorem
(see Theorem 2.1 below) for;22 systems about asymptotic solutions with explicit esti-
mate of the error term, which may be used also for finding actual asymptotic solutions (see
Remark 2.2). The classical Levinson theorem uses a decomposition of the right side matrix
functionA = B+ R, where the leading matriB is diagonal and the perturbation matRx
is integrable. In our version we prove the error estimate using the decomposition with the
leading matrixB such that corresponding system is explicitly solvable. To prove the error
estimates we use a construction of approximate fundamental matrix of system (1.1) in the
special form with an unknown phase functid(t), which may be chosen by using known
asymptotic solutions. In the paper we illustrate on examples some choices of the function
¢(t). For instance one of the choices ¢ft) is based on the Green-Liouville asymptotic
solutions (see (1.30))

Examples show that asymptotic solutions approach works better than Lyapunov’s method
for the systems with complex valued coefficients (see Example 1.3).

There is a bridge connecting asymptotic solutions approach with Lyapunov’s method:
when the asymptotic fundamental matrix solutlgrof (1.1) is chosen the appropriate en-
ergy function of Lyapunov may be constructed by the formula

E(t,u(t)) = W~ (Du(t)]|*.

IndeedE(t) > 0, and if ¥ is the exact fundamental matrix function of (1.1) then con-
servation lanE’(t) = 0 is true.

Furthermore we deduce the transition probability formula for the Schrodinger system
that describes the interaction of two-level atom with electromagnetic field, and we give the
comparison of two approximate solutions.

Denote byL(T,») the class of Lebesgue integrablg i o) functions and by (T, )
the class of differentiable functions ¢, ).

Denote

TrA(t) = aga(t) +ax(t), |A(t)| =det(At)).

Asymptotic behavior of solutions of autonomous systems is described by eigenvalues of
corresponding matri. The key step of finding behavior of solutions of non autonomous
system (1.1) is to find the phase functidhsthat are minimizing (or eliminating) the gen-
eralized characteristic functional

Wiays,a17]

/
Char(0) = —02-0'+6 <Tr(A)+a12) — A - ———=, (2.3)
a2 a2

whereW|-, ] is a Wronskian:

Wi(a,b] = a(t)b'(t) —a'(t)b(t).
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Here and further in the text we often suppressed dependerntc®osimplicity.
Note that in the case of constant matrix A in (1.1) the characteristic functional (1.3)
turns to the usual characteristic polynomial:

Char(8) = -6+ 8TrA— |A,

so we can eliminate the characteristic functional by choosing phase functions as eigenvalues
of the matrix A.

Using Liouville’s formula that gives the connection between the functiynse can
start from a single unknown phase functig) € C?[T,«), and the matrix function A(t) to
construct the phase functiofi:

THAD) | @) E() w4

2 2a15(t)  28(t)

B12(t) = £&(t) +

Introducing the shifted phase functigiit) = TrA/2 — 6; we define the functional

2 /
H(0(t)) = Char(TrA/2 — ¢) (TréA)> —\Ay+a12(2¢+;;llz_a22> — 2 (15)

Note that the functio(t) is connected with the functiofit) = (61 — 62)/2 via trans-
formation

alz(t)ef% 2¢(2)dz

= , C=const 1.6
(C— [1 a12(s)efr2(@dzgy) (1.6)

g0 =

Theorem 1.1. Assume A CY(T, ), a1, € C?(T,), ajo(t) # 0on(T,»), and there exists
a function¢ € C1(T, ), such that

/°° H($(s))
T | &S

Then the rest state of (1.1) is asymptotically stable if and only if

o2 ROEWIYgg < oo, (1.7)

/Tw 0[6;(9ds= —o, j=1,2 (1.8)

0;(t,u) —ag1(t,u)

peffiBiuldy g =12 19
a12(ta U) ( ) | ( )

lim

t—o0

Remark 1.1. The best choice of the functignin Theorem 1.1 is such that(gi(t)) = 0,

which means that the error of approximation is equal to zero and condition (1.7) disappears.
It is well known that Riccati equation (g (t)) = 0 can not be solved analytically in general
case, so we don't expect to find the bésh general, but in many cases using theory of
asymptotic solutions [7] one can find functipnsuch that the functioH@ is so small that
condition (1.7) is satisfied.
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Remark 1.2. The main functiop could be constructed also by using specific asymptotic
fundamental matrix solutio of (1.1). Indeed (see formula (2.11)) from the given-
[‘Pn Wio

] the phase functio§ may be found from the formula
Wa Wa

. d Wio(t)
&) = aIn (Wn(t) .
and the functionp from (1.6). For example, using Liouville-Green (or WKB) asymptotic
solutions we deduce Corollary 1.6 below about asymptotic stability from Theorem 1.1.

In the casea;» = 0 Theorem 1.1 is not applicable, but system (1.1) can be solved ex-
plicitly, so the following theorem is trivial.

Theorem 1.2. Assume &(t) =0, A€ L1(T,»). Then the rest state of (1.1) is asymptot-
ically stable if and only if
t
lim [ ajj(s)ds=—w, j=12 (1.10)
T

t—o0

lim <ef% au1(y)dy / t azl(S)efts(a“a22)(y)dyds> =0, j=12 (1.11)
T

t—o

Example 1.1. Consider the system of linear equations
up(t) = f(t)uz(t), ux(t) = —g(t)uz(t),

Uz(to) = U1o, Uz(to) = Upo,
with
f(t)=t"2, gt)=bt®*? 1<y<2a b#0.
For this example asymptotic stability follows from Theorem 1.1.

In the cases when one of the quantitieS [§(t)] is unbounded condition (1.7) is very
restrictive. In the next Theorem 1.3 under additional conditions (1.13), (1.14) below we
prove the asymptotic stability of the rest state under condition (1.12) less restrictive than
(1.7).

Theorem 1.3. Assume &(t) is not equal to zero for t~ T, and there exists a function
¢ € CY(T, ), such that (1.8) and

“[HOO)|

/T £(s ds< oo. (1.12)

Ol;v] <0, j=1,2 (1.13)
B(t) —all(t) -

are satisfied for all & T.
Then the rest state of (1.1) is asymptotically stable.



Levinson Theorem for 2 x 2 System and Applications... 185

Remark 1.3. If for some positive number p we have
OEM)] <0, DOB()]<—-p<0, t>T, (1.15)

then condition (1.8), (1.13) of theorem 1.3 may be removed, because they follow from con-
dition (1.15).

Introduce the functions
alz(t)

= Fa(geas v mgs 16
t(@_ .
S=0, Svalt)=an() / = @281)(9) an-amdygg n—01, .. (1.17)
T a12(s)

Corollary 1.4. Assume that the matrix-functioritAis real valued, and for somg ™ T

app(t) >0, t>T, (1.18)
w| 2 @
/ M dt <o, forsomen (1.19)
T1 E(t)
[ @+ sa-aw di=e, (1.20)
28(1) +S1+1(t) — all(t) >0 t>Ty, (2.22)
% (t)y<const t>T;. (1.22)

Then (1.1) is asymptotically stable.

Example 1.2. Consider the linear system (1.1) with

0 1
2= (g0 Jary 2r)

Si(t) = /Tt<g<s> +2f'(s))el 2 dvds

If f € CY(T,) and for some numbersgfo

Denote

0< fo< f(t), 0<gt)+2f'(t)<go<2ff, t>T (1.23)
:Sl(t)dt:oo, (1.24)

o0 | Q2
Su(t) + 2€(t) > O, /T ‘?(g) ds< o, (1.25)

then the problem (1.1) is asymptotically stable because all conditions of Corollary 1.4 are
satisfied.

Note that it is well known [19] that in the large damping case (1.23) Wintner-Smith
condition (1.24) is necessary and sufficient condition of asymptotic stability. So itis possible
to get rid of extra conditions (1.25), but we don’t know if it could be done in this approach.
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Corollary 1.5. Assume that the matrix-function(tA is real valued, @(t) > 0 on (T,),
forallt € (T,»), and

o ot .
/ / ‘a21(5)eft (azz(Y)—an(y))dy‘ dsdt< oo, (1.26)
T JT
/oo ay1(s) + a12(8) e w27
T [+ aga(s)el (@221 dyds , :
aga(t) + aga(t) <o .28

[+ aga(s)el (@) —au)dygs —

Then (1.1) is asymptotically stable.
Corollary 1.6. Assume g(t) #00n(T,»), AcC?(T,), ap—ay, a2 € C3(T,»), and

/T " K (1) KR(0E (1) |22 DESIAsgt < oo (1.29)

2 I /
&(t) = \/(T;A) —~ |A|+a12<a1;;1?22> . k() = 2—; <;12) . (1.30)

Then (1.1) is asymptotically stable if and only if (1.8),(1.9) are satisfied.

Corollary 1.7. Assume g — aj1,a12 € C3(T,0),A € C?(T,»), aga(t) # 0 on (T, ),
(1.8),(1.13), (1.14) and

where

/ IK(t) + KE(E)E (t)[dt < oo (1.31)
-
are satisfied. Here functiorés6;,k are defined in (1.30), (1.4).

Then (1.1) is asymptotically stable.

Note that condition (1.31) is close to the main assumption of asymptotic stability theo-
rems in Pucci and Serrin [16, 17], tHdt) is the function of bounded variatidr;y’ K (t)|dt) <

00,

Example 1.3. Consider system (1.1) with

At) = (_01 _21(0) , (1.32)
where
f(t) =t +itP. (1.33)
For the small damping case:
-1l<a<0, B<0, a+pB<-1 (1.34)

conditions of Corollary 1.6 are satisfied and this system is asymptotically stable.
From Corollary 1.7 it follows that this system is asymptotically stable in the more gen-

eral case: 1
a
—1<a<l B< % (1.35)
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Here we consider another application of our approach in optical physics. We deduce
the transition probability formula for dynamic system described by a general system (1.1)
with antihermitian matrix functiod\(t) and initial conditions:

Ul(O) =1 Uz(O) =0. (1.36)

The associated probability for an atom initially in state a to make a transition after
excitation for a time to state b is

P(t) = ur(t)]?

Note that if the matrix A in equation (1.1) is antihermitial: = —A, then the normal-
ization of the wave function is constant at all times:

lua (8) % + |uz(t)]? = 1.

Introducing the auxiliary functions

1) =0(0) -2 [ aua(t)e @V, (1.37)

a(t) = }D In <g(0)(a11(0) — 92(0))> Bt = }Dln <g(0)(a11(0) —62(0))

2 9(t)(82(0) — a11(0)) 2 (t)(62(0) —@11(0)) )’
(1.38)
_ 19(t)9(0)(211(0) — 82(0)) (a12(0) — 61(0))|
PO = |aa2(0)| 22/ 0 (®r)dy (-59)
we have general transition probability formulas
lug(t)2 = B(t) (sinhza(t) +co§[3(t)) s P =1—u(t)? (1.40)

Note that in view of (1.4),(1.6), (1.37)-(1.40) to calculate transition probability we need
to know only the functiorp(t).

Formula (1.40) allows quickly calculate transition probability for any approximation
given via a functiorp. Anyway the best choice df is such that minimizebl(¢) /€.

Example 1.4. Consider the dynamic system (1.1) which describes an interaction of two-
level atom in the external monochromatic electromagnetic field with frequency

h itE
u’(t)—(iWe_itEocos(tw) e 803“‘*’)) u(t). (1.41)

where E is the difference of energy levels of the atom.
From (1.5) we have

H($) = —02 - W2cos(tw) + &' costw) (f:;ttci))

= ¢+ ¢(—iE + wtantw)) — W2 co(tw) — 6. (1.42)
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The function
d = agp = IWe'E coqtw) (1.43)

gives a good approximation from a mathematical point of view. From (1.40) we get

|lug (1)]2 = sir? (W/ot cogsw) cos(sE)ds> +sink? <W/Ot cos(sw)sin(sE)ds) . (1.44)

Note that using expression (1.42) we get

H(O(t)  W2co(tw)(e2E —1)
&t) —iweEcoqtw)

—2Wsin(tE) coqtw),

or
/ H(® ]ds< Z\N/t\sin(sE) cogsw)|ds< tW, (1.45)
1€(s) 0

which is small for small tW.

Using rotating wave approximation from optical physics (see[l1, 18]) we get another
function :

bo = ;2(0) E+4), A=,/(w—E)2+W2 (1.46)
From (1.40)
oo (tA+tw—nN(t) , 1 R
luy(1)|? = Bsir? <2> + Bsinlt? <2 In (A+w)(m—1)> . (1.47)
where
n(t) =tan?t <W) , R= \/(A+oo)200§(too) + WP Sir(tw).
(A4 w—E)’(M-1)(A+w)/(A+ w)2+ u? 20 (A +2w)

B= D2(A+ 2w)2 "= Aro)Bre-g 1)

If w= 0, then from (1.47) we get

w0 = g [si () +sinf (3n5 )|

If E=w=0, then

Ju (1) = sinf(tw/2),

which is often referred as the Rabi formula [1]. Note that one can estimate the error
function for each approximation by using Theorem 2.1 below.
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2. Levinson Theorem for2 x 2 System and Proofs of Main Re-
sults

Suppose we can find the exact solutions of the system

W(t) =BOW(), t>T, (2.1)

with the matrix-function " "
b11(t) boo(t >
B(t) =
® <b21(t) bz2(t)
close to the matrix-function A, which means that the condition (2.7) below is satisfied.
Let W(t) is the 2x 2 fundamental matrix function of the auxiliary system (2.1). Then the
solutions of (2.1) can be represented in the form

u(t) =wY{t)(C+e(t)), (2.2)

whereu(t),e(t),C are the 2-vector columnsi(t) = colomn(uy (t),ux(t)), €(t) = colomn(ey (t), €2(t)),
C = colomnC4,C,),Cx are arbitrary constants. We can consider representation (2.2) as a
definition of the error vector-functiogt).

Following theorem is a version of the Levinson Theorem [15, 7] about asymptotic so-
lutions for 2x 2 systems:

Theorem 2.1. Assume there exist a functigre C[T,») such that

Char(8;(t)) 1)1+ ft 208 (y)lay
28(t)

Then every solution of (1.1) can be represented in form (2.2) and the error vector-function
g(t) can be estimated as

L(t) = max

max e LY(T, o). (2.3)

e < el (- 1+exp [ L(s)ds). @4

where C is the constant vector afid|| is the Euclidean vector (or matrix) nornie(t)|| =

\EL) +E5().

Remark 2.1. From (2.3),(2.4) it follows that(t) = o(1), t — . Also if Cha(8;) =
Char(6,) =0, theng(t) = 0.

Remark 2.2. Trying to find asymptotic solutions that are minimizing the error or corre-
sponding function H given by formula (1.5), one can choose the funggtionexample by
the formula (see also (1.30))

TrA\? a1 —apy
2 11 22

=(——) —|A :
o=(t) <2> |+alz< 2a1, >

Then asymptotic solutions obtained by this choice via formulas (1.4) will coincide with
the well known Liouville-Green functions. Another choicé o given in (2.30) below.
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Proof of Theorem 2.1The substitutioru(t) = W(t)v(t) transforms (1.1) into
V(L) = M(t)v(t), M(t) =W 1AW - W)(1).

By integration we get
b
v(t) = cf/ M(sv(s)ds T <t<b, (2.5)
t

where the constant vect@ris chosen as in (2.2).
Estimatingv(t)

b
vl < [IC]l +/t IM(s)][[lv(s)|ds
and using Gronwall’s inequality we have
IvD)] < [Ic]ek 1M1

From representation (2.2) we have
b
) =W lu—C—v—C= —/ M(s)v(s)ds
t

and using previous estimate we get

b
el < [ IMv]ds
<icl [ mlexs( [ miay)as
~ (- 1+ex( [ IMIas).

or
e < Gl (~1+exp( [ W HAY—W)(g)as)). (2.6)

Note that error functiom(t) is bounded if
/ [WLAY — W) (s)[ds< . 2.7)
t

To finish the proof we should calculate matrix functibhin terms of characteristic
functionsChar(8;) using the construction of approximate fundamental matrix solution of
(1.2).

To construct the approximate fundamental matrix functiéret us seek approximate
solutions of (1.1)

Up = a11Us +agol, Uy = apils + axoly,

as a linear combination of exponential functions

Uy = Cleﬁ Bu(y)dy |_ Czeﬂ B2(y)dy. (2.8)
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Substituting this representation foy in the first equation
AUz = Uy — aqaUiy = (B — a11)C11 1YY 4 Cp(8, — ayg)e/r 20,
and solving foru, we have
Up(t) = Uy (t)Cy e 109 1 Uy (1) Coeht 20y,
_Bi-an 02 —an1

2(t)

Us(t . Us(t) = . Ug(t) —Uy(t) = , 2.9
1(t) ™ 2(t) ™ 1(t) —U2(t) ) (2.9)
or

u(t) = W(t)C, (2.10)

where the fundamental matrik(t) is defined by the formula

1 1 el O1(y)dy 0
w) = <U1(t) Uz(t)>< 0 ef%ezw)dy)‘ (2.11)

Define B1(t) — Bo(t

E(t):l()EZ(), Char;(t) = Char(6;(t)). (2.12)

If AcCY(T,®), ay;pcC?(T,»), ayo(t)isnotequaltozero ofil,«), then following
formulas are true

W(t)| = defW(t)] = 10} eft (Brt02)dy (2.13)
a]_z(t)
_ / /
Chan(t) —Chan®) _q g, Tr(a)+ S - %2 (2.14)
2¢ & ap
1 0 0
“1l_A_wwl_ —
YMP=A-WE 28 (Ulcharz —U,Char; Char — Char2> ’ (2.15)
_ _ 1 Chary(t) e~ 2t ¥Chary(t)

M) =W IAY —wlw i) = —— Tood 2.16
® ®) 28(t) (—ezf%zdy(:harl(t) —Chars(t) (2.16)
From Liouville’s formula

hds
w =Tr(A) =a;;+a (2.17)
in view of (2.11) we have
(01—-62)" &,
~= & 224 01+0,—a;1—a»=0
0,6, a12+ 1+0—aj1—ax
or another version of Liouville’s formula
E/ a/
B1+0,=Tr(A) — >+ 12, (2.18)

¢ an
It easy to check that the functioBs from (1.4) satisfy (2.18).
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Remark 2.3. From (1.3) and (2.18) it follows that

Char(t) = Char(t) = H(t), (2.19)
and formula (2.16) turns to
- - H(t) 1 _e2Jr&(vu(y)dy
_ 1 _ 1uyy
M(t) = VAW Wiy = o) (ezﬁwu(y)dy X : (2.20)

Formulas (2.13)-(2.16) can be checked by direct calculations. Indeed,

Wia2,01 — 6] >

Charz(t) — Charl(t) = (61 — 92) (el + 62 — Tr(A) + 312(91 — 92)

From (2.11)

1 [ehtady ¢ U, -1
-1 _ 2

A 0, ghtdy
qJ(t)_</\1ul AlUp) \ 0 el

where 6 . . W 0
i—a a;2,0i —a .
/\J:eJ‘I’L J ll) 7@: ] [ ek 11]7 J:172
0 —a;n  an a12(6j — au1)
So
B ary a2
LIJ/LP 1 — <a21+ Chal‘]_UZEEChaI’zUl a22+ Charzza(:harl)
Indeed,
_ 1 01 0, U -1
Wyl =
U, —Ug </\1U1 /\2U2) <—U1 1
1 ( 6,U, — B,Uq 6, -6, > -
Uz —Ug \(A1—A2)UUz AUz — A1Ug
aiy a2
ap + CharzulszCharluz apy+ CharZZECharl )
in view of
8:U, — 68Uy (81 —62)U;
U,—U; 1+ U, — Uy 1+a11— 91 11,
and NoUo — AU No—N\)U 01) (N2 — A
—_ —_ a —_ —_
2U> 11:(2 1)14—/\2:(11 1) (A2 1)—1—/\2
U, —U; U —Uy 2¢
_ _ ! _ ! _ ! /
_an—6 o (02—a11)’  (B1—au) . (62—an1)’ &,
2¢ 0, —an; 01 —an 6r—a;1  an
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(62 —a11)’ (all—el Or—an) o 5
92 —al1 22 ZE. a1z
¢ &, , , Chan—Chan

:91+62—a11+€—a—12 a2 2

01 —ann+ —|—1>—|—

and
UiUp(A1—A2) _ (81 —au1)(62—au1) [ZE n (61—a11)’  (B2—an)

U —Uy —28ay 01 —an 6, —an;

(61 —a11)(82 — a11) N (82 —a11)(B1—a11) — (1 —a11) (62 —aq1)

B app 2a12¢

. ChanU; —ChanU; aor Chan n (Char; —Chary) (61 —a11)
- 2¢ T T 2ay2¢ ’

where we use the calculations

CharU; —ChanU,
28 N

6> —an;
2a4¢
_61—an
2a12¢
Al 0102 —a11(01+62)  aj1+a
+ +
—aj12 a2 2a15¢
(02 —a11) (01 —a11)’ — (61 —a11) (B2 —a11)’
_|_
2a12¢
(61 —a11)(02—a11) W[B2—ay1,61 —ay]
ap1+ .
a2 2a122

The final estimate (2.4) follows from (2.6) and (2.16). O

a (01 —a
[W + 67 — 01 (a1 +ag2) + (61— 1) — 12(;1211)] N

262 — all)] _
a2

[\A| +6% — 6x(ar1 +ap2) + (82— ag1) —

[02(81—a11) — 01(82—a11)]+

Proof of Theorem 1.1From condition (1.7) of Theorem 1.1 and formula (2.20) it follows

that
[M(t)[| € La(T, ),

and condition (2.3) of Theorem 2.1 is satisfied. Applying Theorem 2.1 we obtain represen-
tation (2.2) for solutions of (1.1). From (2.2) and (2.4) we get stability inequality

Ju®)]l < c-[[¥t)C]|. (2.21)
Because of this estimate all solutions of (1.1) are stable and attractive if and only if
lim (¥ ®1) = 0.

This condition is satisfied because of conditions (1.8),(1.9) of Theorem 1.1 and formula
(2.11). O
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Proof of Example 1.1We have

and

12 = f(t), TF(A) =0,

A= f(t)g(t) HU=49F“””Cg)
Choosing ib
[
E = t7y
we get

k=01, Hz(t): fzg E(1—K?) +K = O(t¥2) e Ly(T, ),

if y>1
and condition (1.7) is satisfied. From

B12=

28.12 2& N ty + 2t
y—2a .
(6] = 0, if
[ J] 2t <4, I
it follows that condition (1.8) is satisfied.

If y> 1 then condition (1.9) is satisfied as well:
8, —

Ui~ A0y _ g2 <Ib+y_ a> eXp</ (y—2a)dy
a2 ty

a, E’_iib y—2a

y < 2a,

ot —o
. V) o 0
whent — oo O
Denote byG(t,s) = W(t)¥~1(s) the Cauchy matrix function of (1.1).
Lemma 2.2. Assume that conditions (1.13), (1.14) are satisfied. Then
G(t,9)] = W)W (s)| <C ali(’)s) T <s<t, (2.22)
[WwOMOHWY )| <C a( ) t>T. (2.23)
12

Proof of Lemma 2.2From condition (1.14) it follows that

Uil <C, j=12
By direct calculations

1 gls 61y gls 620y Us(s) -1
09~ s i (o e LS ( )
Ua(s) —U1(s) \Up(t)els®1dy  Uy(t)els®dy | \ -Ui(s) 1

So estimate (2.22) follows from

forall t>T.

C alz(S)
CaltI= s —taen ~ 2l
The estimate (2.23) follows from the formula (2.15)

L kj=12
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Proof of Theorem 1.2Proof follows directly from the explicit formula for fundamental ma-
trix function in the casey> =0:

glran(y)dy 0
wit) = et a2(V)dy[C 4 f} a21(s)ef?(an—azz)(y)dydg7 gl az(y)dy | -
Proof of Theorem 1.3Consider the system (1.1). By substitution

we get t
V() = M(tV(L), v(t):C+/TM
or
c+/ M(s usids T<s<t, (2.24)
= LIJ(t)C+/TtG(t,s)llJ(s)M(s)q—'1(s)u(s)ds (2.25)

From this representation and Lemma 2.2 we obtain the estimates

lu® | < [[¥E)C]] Jr/Tt IG(E,8)[|- [W(s)M(s) ¥~ H(s)u(s)|ds

< Iwwel+ [ 5o

Applying Gronwall’s inequality (see for example [10]) we get

Juol < [wioel + [ 1wl \'g((;) exp( 720 ay) as
of [

o ‘ ay) ).

lu(s)[|ds

H(s)

()

[u®]] < [WOC] (

where|[u(t)|e = sup=tlu(t)].
So we obtain the stability estimate

lu@)|| < HW(t)CHmexp(/Tt ";(@

(S)

ds> . (2.26)

Using this inequality we can estimate (2.25) again

(HE
&)

From conditions (1.13),(1.14) of Theorem 1.3 and formula (2.11) we have

lu(t) —WP)C|| < [|W(t)Clle ( ds— 1> . (2.27)

||¥(t)C|| < const
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So from stability inequality (2.26) and condition (1.12) of Theorem 1.3 we get stability
of (1.1).
From (1.8),(1.9) we have

lim [|@(t,u)C| =0,

and asymptotic stability of (1.1) follows from the estimate (2.26).
O

Proof of Corollary 1.4.We deduce Corollary 1.4 from Theorem 1.3 by choodinas in
(1.16), and

0 =Syt 2, (2.28)

From the conditiora;> > O it follows that forallt > T; > T
t s T S
/ alze/t (2Shi1t+aze—ag)dy -, / ! alzeft (2Sh1+aza—anr)dy ya(T) > 0,
T T

and from (1.16) a
12

2yi(Tw)
By direct calculations we get from (1.5),(2.28)

2 /
a1 — & 20 +a31—a
H(t) = <112 22> +aizap1+ a2 <¢ 2;2 22) —¢2=

2 !

ag1—ag Sii1 ax —ai

== 22 tapamtan| == ) — (Sui+ )2 =
2 a2 2

<&<0, t>Ti>T. (2.29)

S
ajpap1 +ai2 <a1+2 + (11— a22)Shi1 — 33+1 = 3% - 3§+1,

if S,;11 are the solutions of first order equations:

ai2 a2 a2

' o
$=0, (S“1>+4m1—@95”1=5*—aa, n=012,..

and given by formulas (1.17). So condition (1.12) of Theorem 1.3 turns to (1.19).
In view of (1.6):

& ap

25, 2a;,

=0+§
we have from (1.21),(2.28)

TrA &, & TrA

A S <ay-Sui-26<0
2 T2a, 2% 2 db=a11—-S1<a—S1—2€ <

B=0-28=a11—-S1 -2 <0
From condition (1.20) it follows condition (1.8):

01 =¢+

t
/m@®e—%j:LZtam
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Finally condition (1.14) of Theorem 1.3 follows from (2.29) and (1.22):
E3 1 _1 _ )_sm

- f} ay el (@Shiatag—an)dy ~ v’

6 —an

< const

a2 a2 a2

Proof of Example 1.2From (1.16),(1.17) witim = 0 we have

1 t s
&(1) = & 8= [ (g+2r)el s

2 telaS-T

and conditions (1.19), (1.21) of Corollary 1.4 turns to condition (1.25). From the estimate

t t
Sit) < go [ el Wds< g [ ol Vas< 2
T T 2fg

condition (1.22) is fulfilled. The condition (1.20) follows from the estimates

/tefTSZ(Slf)dyds< /me(sz)(f%*fo)dS: 1 Ei<oo
T —Jr fo—2p T

t t T /
2¢(1)dt = —/ <In/ efTZ(Slf)dde> (T)dt =
T1 T

T

|n< TTl ef?2<51f>dy> I (/Tt ef?2<51f>dy) > In(f2(T,To)) + In(fy).

So (1.20) follows from (1.24):

t t
/(2E+Sl)dyzln(f1f2)+/TSldy—>oo, t - oo,

T

Proof of Corollary 1.5.Choosing

o= azz;a“ (2.30)

we get

alz(t)
_ - _
Zﬁ a12(s) el (aze—an)dyqg = 0, 61=a,

&=

a2
Fara(sjeken-5ds

2 . /
(o = (7Y - (222 ) g2 -

Or=a;1 -2 =a11+

)

2
a1 —az 2
( 5 ) +agoa1 — ¢° = aroayy,
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H(t)
2¢
So condition (1.12) of Theorem 1.3 turns to (1.26). The rest of the proof is similar to
the proof of Corollary 1.4.

t S
- _aZl(t)/T ago(s)eh (Bzz-adygg

O
Proof of Corollary 1.6. From
& a5 6112( 3 >/
= — — _—_— = — e — = k— 1 3
¢ 2¢ 202  2¢ \arz &= (k=1)2
we get from (1.5)
Tr(A)\? a1 —an\’
= () e (BL22) g2y e,
2 2a12
Choosingg as in (1.30) we get
H(t) / 2
—= =K (t)+k(t)&(t), 2.31
g — KO +HEORD (2:31)
and Corollary 1.6 follows from Theorem 1.1.
O

Proof of Corollary 1.7.Corollary 1.7 follows from Theorem 1.3 by choosifgs in (1.30).
O

Proof of Example 1.3From (1.30)

g= /120~ 1+ /().
To check conditions of Corollary 1.6 denote
P=0[f2(t)—1+ f'(t)] =t2 —tP 14 at® 2,
Q=0[f%(t) — 1+ f'(t)] = 2% P - ptP-2.

Froma < 0,3 < 0 we get

2 2
VP2+Q2+P= \/%QZ—P = %(1"‘0(1)): t— oo
and
_ P+ /P24 Q2
018 = P+ Q) = Y = F1+o(L).

So condition (1.29) follows from

€| =0(1), K+KkE=0(t"2), t— o,
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and
4 /T D[E]dt:% /T (26948 4 BtP12(1 4 o(1))]dt < oo.

Froma > —1 it follows that conditions (1.8) (1.9) are satisfied as well:

oe;] =0 [iE— f(t)—i] = —t%(1+0(1)) +O(1/t), t— oco.

Further we will show that conditions of Corollary 1.7 are satisfied if conditions (1.35)
are fulfilled. Denote

V) =0[f -8 ="~ /PTR/2 R=PP+ Q.
By calculations

_ t®—(P+R)/2  2A*®-P-R K(t)
to4 /(P+R)/2 2%4+y2P+2R  (2%+2P+2R) (2% —P+R)’

K = (ZtZa _ P)2 _ R2 — 4t2a [1_ ata—l _ BtZB—l—a _ BZ'[ZB_Z_G}.

V(t)

From the formulas foK andQ it follows that
K=t2(1+0(1), Q=2""P1+0(1)).

To prove
/ V(t)dt =
-

we divide the planéa, ) on 3 regions:
{a>B,a>0}, {B>a,p>0}, {a<O0,B<O}

and prove it in each region separately.
Regionl.a >3, a>0.

FromP=t2(1+0(1)), R=t¥(1+0(1)), R-P= 2 =t%®1+0(1)),

V(D) = t*(1+0(1)) _ t*(1+0(1))
to 4 /(P+R)/2 t3a
and ifa < 1 then the formula is true.
Region23>a, B>0.
FromP=—tB(1+0(1)), R=tB(1+0(1)), R-P=tB R+P= L —t2(1+
0(1)),

=t"%(140(1)),

Vi = PUAto) _ tLrol) ag
t+./(P+R)/2 ta+2p
and ifa +1— 2B > 0 then the formula is true.
Region3:a <0, B<O0.

(1+0(1)),
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FromP=—-1+0(1), R=1+0(1), R—-P=R=2+0(1), R+P= =
t2+2%(1+0(1)),

t29(1+0(1) _ t*(1+0(1)

V(t):ta—F\/m_ t0‘+t°‘+[3

and ifa + 1 > 0 then the formula is true.
Now we are ready to check conditions (1.8):

t(14+0(1)),

ol Dlealds _ off DIE-T—Flds _

1/2
e RO-8ds - ce VOIS 0t o,

‘E(T)
&)

FromO[&] > 0 we get

eff}l:l[f]ds < CefthV(s)ds_> 0, t— oo,

ef%D[ez}ds:e—ﬁD[z+f-§;]ds:‘E(T) /2
&(t)

Conditions (1.13) are obviously true.
To check conditions (1.14) note that> 0 or 3 > 0 then

f/
(1) = VI 12 o, 1o, ||\| <

f'—1 f'—1 fr'o1
E—fl=yf2+f-1-f= = §C<—|—>§C
=1l fr /-1 fa+om) ~ \f 7

E—f[<[E]+][f|<C.
1+o()

~1 0

If a <0orB<0then

From these estimates ar%d it follows that conditions (1.14) are satisfied.

At last (1.31) is satisfied in V|ew of:

k(t) = 22/2 = l+t0(l), (t) = l+t2(l),

t— oo,

Proof of transition probability formula (1.40)From representation (2.10) we get

0 +92 Cl t 61— 92 C2 t 6—6
V/CiCoelo ™7 \/> dy g [ ZZeh Ty
1Cp€e’0 G

In view of x+ 1 = &+ e~"* = 2cosk{Inx), and

/ t s / /
0-8 =3 gt)=g0) - [bei*tas Z=2p+ 7 10y,
0 012 b
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we have

_ 101402 gy 1, C9(0)
Uy (t) = 24/C1Coelo 2 COSh(ZInczg(t) ,

and
2

Uy (t)[2 = 4/C,Cp|elo D (Brte2)dy

1. C19(0)
cosh(2 In Cooll) >

From initial conditions (1.36) we get
Ci+C =1, C1U1(O> +C2U2(0) =0,

or

—U(0)  _ a11(0) —62(0) C= -

C

Ul(O) 91(0) —a11(0)

~ Uy(0) - U,(0) 2(0)
Further we have

C19(0)

|u (t) |2 = 4]CyC,|efo D (r+e2)dy

whereq, 3 are defined in (1.38) and

Ui(0)-Uz(0)  2(0)

1 2 :nY (2
cosh<2In ng(t)>‘ = B|cosHa +iB)|%,

B = 4/C,C,|eli Der+ea)dy _ 41211(0) — 61(0)[|211(0) — B2(0)] s 136, +6)0y

161(0) — 62(0)|2
Formula (1.40) follows from this formula in view of

|cosh(a +iB)|? = sintt(a) 4 cog(B).

Proof of (1.44).By direct calculations

g(t) =g(0) — z/t a()eo 20 — g(0) — z/t pelo2@dz_ _als2(@dz
0 0

B g/(t) B B a/ E/ B q)/ ¢/ B B
4/6,(0)62(0 t . -
B(t) = wl((;)(_)ez((o))kzefoﬂ(eﬁez)dy: 1, ¢ =iW cogtw)[cogtE) +isintE)],

a(t) = }D In _9(0)92(0)> — —}D In (g(t)> — —}D In (ein+f52¢> :

2 g(t)81(0) 2 9(0) 2

t t
at) = —ED(inJr A 2¢ds) = _/o D[cp}ds:w/o cogsw) sin(sE)ds

B(t) = —%D(iTH— /Ot 2¢ds) = —72T—W/0t cogsw) cogsE)ds

9,

201
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Proof of (1.50). From (1.37) we have

2W[(A+ w) cogtw) — iwsin(tw)]e! A+

Go(t) =g(0) - 2W [ ¢4 cogtseds=

A(A+2w)
IO IA(A+ 2w) coqtw) B 20 (A + 2w)
E__Zg(t) ~ T 2(A+w)codte) —2iwsinte)’ T BAtw)BFro—E) -
A, ¥ (E-A-w) i 2A(A+ 2w) coqtw)
el*EJraiiz_ZiE* 2 ’ 922(E—A—w+ (A+oo)cos(tw)—icosin(tm)>
B—B(t) 4161(0)62(0)| 0O +6)dy _ (A+w—E)*(Mm—1)(A+ w)y/(A+ 0)% + a?
N ‘91(0) —92(0)’2 N AZ(A+2(A))2
(2.32)
1 B9 iwsin(tw) — (A+w)cogtw)] | 1 R
a_ZDIn< B+ o)(m—1) ) _Elnm (2.33)
1 B9 isin(tw) — (A+w)cogtw)] | t(A+w) —n(t)
B‘z“‘( B+ w)(m-1) )‘ 2 (2:34)
where _
isin(tw) — (A+ w) cogtw) = Re™M®),
]
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