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Abstract

In [1], a conjecture of J.G. Thompson for PSLn(q) was proved. It was shown that every finite
group G with the property Z(G) = 1 and cs(G) = cs(PSLn(q)) is isomorphic to PSLn(q) where
cs(G) is the set of conjugacy class sizes of G. In this article we improve this result for PSL2(q). In
fact we prove that if cs(G) = cs(PSL2(q)), for q > 3, then G ∼= PSL2(q) × A, where A is abelian.
Our proof does not depend on the classification of finite simple groups.

keywords: Conjugacy classes, Simple groups, Huppert’s conjecture.

1 Introduction

Let G be a finite group and Z(G) be its center. For x ∈ G, assume that xG is the conjugacy class of
G containing x and CG(x) denotes the centralizer of x in G. We use cs(G) for the set of all conjugacy
class sizes of G, that is cs(G) = {|gG| : g ∈ G}. In this article we are concerned with the following open
conjecture (Conjecture 1):

Conjecture 1. (Dual of Huppert’s Conjecture). Let G be a finite group and let H be a nonabelian
simple group. If cs(G) = cs(H), then G ∼= H ×A, where A is abelian.

∗Mathematics Subject Classification: 20E45, 20D05.
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This is exactly the dual of Huppert’s Conjecture on character degree sets of nonabelian simple groups,
which was formulated by B. Huppert in the late 1990. If cd(G) denotes the character degree set of G,
then we have:

Conjecture 2. (Huppert’s Conjecture). Let G be a finite group and let H be a nonabelian simple group.
If cd(G) = cd(H), then G ∼= H ×A, where A is abelian.

Note that Dual of Huppert’s conjecture is an extension of Thompson’s conjecture:

Conjecture 3. (Thompson’s Conjecture). Let G be a finite group with trivial center and let H be a
nonabelian simple group. If cs(G) = cs(H), then G ∼= H.

In [1], using the classification of finite simple groups, it is shown that PSLn(q) satisfies Thompson’s
conjecture. In this article we want to improve this result and we will show that PSL2(q) satisfies Dual
of Huppert’s Conjecture. At first we obtained the result by using the main theorem in [1]. However, we
have chosen to avoid direct reference to the main theorem of [1], in order to keep our proofs independent
on the classification of the finite simple groups. The proof is divided into two parts. First, we consider
a finite group G such that cs(G) = cs(PSL2(q)), when q is even and to get the result in this case,
we will use the classification of F -groups. By an F -group we mean a family of all finite groups G in
which for any x, y ∈ G − Z(G), if CG(x) ≤ CG(y), then CG(x) = CG(y). For a noncentral element
x ∈ G, the centralizer CG(x) is said to be free if it is both maximal and minimal among all the proper
centralizers of G. A group G is F -group, if and only if all of the centralizers of its non-central elements
are free. The F -groups have been classified by Rebmann [11]. Secondly we study a group G such
that cs(G) = cs(PSL2(q)), for odd number q. In this case we get the results by applying Baer and
Suzuki’s results on groups having a non-trivial partition. A set β = {H1, H2, ...,Hn} of subgroups Hi

(i = 1, 2, ..., n) is said to be a partition of G if every element x ∈ G, x 6= 1, belongs to one and only one
subgroup Hi ∈ β. If n = 1, the partition is said to be trivial.

Also we used the classification of Zassenhaus group of degree q + 1. In fact, a Zassenhaus group of
degree q + 1 is a permutation group G of degree q + 1, in which the following hold:

(1) G is doubly transitive on q + 1 points.
(2) Any non-identity element has at most two fixed points.
(3) G has no regular normal subgroups.
Note that, if G acts on Ω and K ≤ G such that K acts on Ω transitively and also for every α ∈ Ω

the stabilizer Kα is trivial, then we say K is a regular subgroup of G.
For an integer n, we write π(n) for the set of all prime divisors of n. We denote by π(G), the set of

all prime divisors of |G|. If p is a prime number and n is an integer, then we use the notation np for
p-part of n, that is , np = pa, where pa | n and pa+1 - n. If π is a set of primes, by Gπ we mean a Hall
π-subgroup of G and in the particular case if p is a prime, then Gp denotes a Sylow p-subgroup of G. If
x ∈ G, by index of x in G we mean the size of the conjugacy class containing x. All further unexplained
notations are standard and are referred to [7], for example.

2 Main Results

The following result is the characterization of Zassenhaus groups of degree q+ 1, which follows from [9,
Theorem 11.6].

Theorem 2.1. Suppose that G is a Zassenhaus group of degree q+ 1 and order (q+ 1)qd. Then q = pf

is a prime-power, and the followings are the only possibilities.
(a) G = PGL2(pf ).
(b) p is odd and G = PSL2(pf ).
(c) p is odd, f is even and G is a certain sharply triply transitive group of order (q2− 1)q containing

PSL2(pf ) as its subgroup.
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(d) p = 2 and G is a Suzuki group Sz(q).

The following lemma describes the structure of a free centralizer which will be used frequently.

Lemma 2.2. ([5, Lemma 6]) Let G be a group. If CG(x) is free, then either CG(x) is abelian or
CG(x) = Up × Z(G)p′ , where Up is a p-group for some prime p.

Lemma 2.3. ([2]) Let G be a finite group. If the set of p-regular conjugacy class sizes of G is exactly
{1,m}, then m = paqb, where q is a prime distinct from p and a ≥ 0, b ≥ 0. If b = 0, then G has an
abelian p-complement. If b 6= 0, then G = PQ × A, with P ∈ Sylp(G), Q ∈ Sylq(G) and A ≤ Z(G).
Furthermore, if a = 0, then G = P ×Q×A.

Lemma 2.4. Let G be a finite group with order npα, where (n, p) = 1 and α > 0. Assume P and R
are two Sylow p-subgroups of G, such that P ∩R has index p in P . Then |G : NG(P ∩R)| = n/t, where
t | n and t > p.

Proof. It is easy to see that RP ⊆ NG(P∩R). Hence |NG(P∩R)| ≥ |PR|. Now the result is obvious.

Lemma 2.5. Let H ≤ G such that G = HZ(G). Then cs(G) = cs(H).

Proof. Since G = HZ(G), this implies that G = HCG(r), for every r ∈ G. Therefore, for every r ∈ G,
|rG| = |G : CG(r)| = |HCG(r) : CG(r)| = |H : H ∩ CG(r)| = |H : CH(r)| = |rH |.

The following statement is taken from [8, Theorem A], which is the classification of F -groups.

Lemma 2.6. (Rebmann). Let G be a nonabelian group. Then G is an F -group if and only if it is one
of the following groups:

(1) G has a normal abelian subgroup of prime index.
(2) G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius complement L/Z(G),

where K and L are abelian.
(3) G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius complement L/Z(G),

such that K = PZ(G), where P is a normal Sylow p-subgroup of G for some prime p ∈ π(G), P is an
F -group, Z(P ) = P ∩ Z(G) and L = HZ(G), where H is an abelian p′-subgroup of G.

(4) G/Z(G) ∼= S4 and if V/Z(G) is the Klein four group in G/Z(G), then V is nonabelian.
(5) G = P ×A, where P is a nonabelian F -group of prime power order and A is abelian.
(6) G/Z(G) ∼= PSL2(pm) or PGL2(pm) and G′ ∼= SL2(pm), where p is a prime and pm > 3.
(7) G/Z(G) ∼= PSL2(9) or PGL2(9) and G′ is isomorphic to the Schur cover of PSL2(9) ∼= A6.

We note that except for the last two cases, G is solvable.

Lemma 2.7. ([3, 4]) If a solvable group G has a non-trivial partition β, then one of the following
conditions is satisfied:

(i) A component of β is selfnormalized and G is Frobenius.
(ii) G ∼= S4 and β consists of maximal cyclic subgroups of G.
(iii) G has a nilpotent normal subgroup N , which is a component of β such that |G : N | = p and all

x ∈ G \N has order p.
(iv) G is a p-group.

Lemma 2.8. ([12]) A finite non-solvable group G has a non-trivial partition β if and only if G is
isomorphic to one of the following groups:

(i) G ∼= Sz(q), the Suzuki simple group.
(ii) G ∼= PSL2(pf ) or PGL2(pf ), where p is a prime, and pf ≥ 4.
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Since PSL2(2) is not simple, the following theorem covers all finite simple groups PSL2(q), for even
q.

Theorem 2.9. Let G be a finite group and q > 2 even. If cs(G) = cs(PSL2(q)), then G ∼= PSL2(q)×A,
where A is abelian.

Proof. It is known that if q = 2f , with f ≥ 2, then

cs(PSL2(q)) = {1, q(q − 1), q2 − 1, q(q + 1)} = {1, 2f (2f − 1), 22f − 1, 2f (2f + 1)}.

Since there are no divisibilities among the nontrivial conjugacy class sizes of PSL2(2f ), the centralizers
of all non-trivial elements of G are free. Hence, G is an F -group. By using the classification of F -groups
we have the following possibilities:

Case 1: G has a normal abelian subgroup H of prime index p.
If H = Z(G), then G is abelian since G/H is cyclic. Hence, H−Z(G) is nonempty. For x ∈ H−Z(G),

we have CG(x) = H and then |xG| = p 6∈ cs(G). So G is not in this class.
Case 2: G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius complement

L/Z(G), where K and L are abelian.
Pick x ∈ L − Z(G), we have CG(x) = L. Hence |xG| = [G : L] = |K|/|Z(G)|. Similarly, pick

y ∈ K − Z(G) we have |yG| = |L|/|Z(G)|. So gcd(|xG|, |yG|) = 1 which is not possible according to
cs(G). Hence G is not in this class.

Case 3: G/Z(G) is a Frobenius group with Frobenius kernel K/Z(G) and Frobenius complement
L/Z(G) such that K = PZ(G), where P is a normal Sylow p-subgroup of G for some prime p ∈ π(G),
P is an F -group, Z(P ) = P ∩ Z(G) and L = HZ(G), where H is an abelian p′-subgroup of G.

It is clear that G = KL and K ∩ L = Z(G). Hence |K| = |P ||Z(G)|/|P ∩ Z(G)| and |G| =
|KL| = |K||L|/|Z(G)|. Pick x ∈ L − Z(G) we have CG(x) = L. Thus |xG| = |G|/|L| = |K|/|Z(G)| =
|P |/|P ∩ Z(G)| is a prime power which is not possible considering cs(G). So G is not in this class.

Case 4: G/Z(G) ∼= S4 and if V/Z(G) is the Klein four group in G/Z(G), then V is nonabelian.
For each x ∈ G − Z(G) we have Z(G) ≤ CG(x) and [G : CG(x)] | [G : Z(G)] = |S4| = 23·3. This

shows that all primes dividing conjugacy class sizes are either 2 or 3, which contradicts the fact that
2f − 1, 2f + 1 and 2f are pairwise coprime. Hence G is not in this class.

Case 5: G = P ×A, where P is a nonabelian F -group of prime power order and A is abelian.
It is clear that the conjugacy class sizes are all prime powers. Therefore, G is not in this class.
Case 6: G/Z(G) ∼= PSL2(pm) or PGL2(pm) and G′ ∼= SL2(pm), where p is a prime and pm > 3.
If pm = 5, then cs(G′) = {1, 12, 20, 30} and |G/Z(G)| = 60 or 120 = 23 · 15. Since |xG| = [G :

CG(x)] | [G : Z(G)] for all x ∈ G, we have 2f | 23 and 2f ± 1 | 15. Since f ≥ 2, it implies f = 2. So
cs(G) = {1, 12, 15, 20} which contains no multiples of 30 ∈ cs(G′). So G does not satisfy this case.

Suppose that pm ≥ 7 is odd and pm ≡ ν (mod 4), where ν ∈ {−1, 1}. We have |SL2(pm)| =
|PGL2(pm)| = pm(p2m − 1), and cs(SL2(pm)) = {1, (p2m − 1)/2, pm(pm − 1), pm(pm + 1)}.

Since each r ∈ cs(G′) is a divisor of some element in cs(G) and pm(pm+ ν) is even, we conclude that
pm(pm + ν) is a divisor of either 2f (2f − 1) or 2f (2f + 1). Since pm(pm + ν)/2 is odd, we infer that
pm(pm + ν)/2 is a divisor of either 2f − 1 or 2f + 1. Thus pm(pm − 1)/2 ≤ pm(pm + ν)/2 ≤ 2f + 1. By
pm ≥ 7, we have 2(pm+1) < pm(pm−1)/2−2. So 2(pm+1) < 2f−1. Therefore, pm(p2m−1) < 22f−1.
On the other hand, for each x ∈ G, we have |xG| = [G : CG(x)] | [G : Z(G)] = pm(p2m − 1). Hence
s ≤ pm(p2m − 1) for all s ∈ cs(G), which is a contradiction, by the above argument. Thus G does not
satisfy this case.

Now we suppose that pm is even. So G/Z(G) ∼= G′ ∼= PSL2(2m), hence

cs(G′) = {1, 2m(2m − 1), 22m − 1, 2m(2m + 1)}

and |G/Z(G)| = 2m(22m − 1). Since every r ∈ cs(G′) is a divisor of some number in cs(G), we have
2m | 2f . Since all r ∈ cs(G) are divisors of |G/Z(G)|, we have 2f | 2m. Thus 2f = 2m and so m = f .
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It is clear that G′ ∩ Z(G) = {1} and |G/G′| = |Z(G)|. Hence G = G′Z(G) ∼= G′ × Z(G), which is
the result.

Case 7: G/Z(G) ∼= PSL2(9) or PGL2(9) and G′ is isomorphic to a Schur cover of PSL2(9) ∼= A6.
We have |PSL2(9)| = 360, and |PGL2(9)| = 720. Using GAP, we have 90 ∈ cs(G′) for any Schur

cover of A6.
Since 720 = 24 · 45, by considering cs(G) and the fact that |xG| | [G : Z(G)] for all x ∈ G, we obtain

2f | 24 and 2f ± 1 | 45. By checking directly with f = 2, 3, 4, we have f = 2. So cs(G) = {1, 12, 15, 20}
which contains no multiple of 90 ∈ cs(G′). Thus G does not satisfy this case.

Note that PSL2(5) ∼= PSL2(4) and PSL2(3) ∼= A4 is not simple. The following theorem covers all
finite simple groups PSL2(q), for odd number q.

Theorem 2.10. Let G be a group such that cs(G) = cs(PSL2(q)), where q = pf ≥ 7 and p is an odd
prime. Then G/Z(G) ∼= PSL2(q).

The proof of Theorem 2.10 follows from a series of Lemmas and Remarks 2.11 - 2.18. In the following
we assume that G satisfies the hypothesis of Theorem 2.10.

Remark 2.11. Since q ≡ ν (mod 4), where ν ∈ {−1,+1}, we have

cs(PSL2(q)) = {1, (q2 − 1)/2, q(q + ν)/2, q(q − ν), q(q + ν)}.

By a well-known result in [6] we may assume that π(G) = π(q(q2 − 1)). Since q ≡ ν (mod 4),
(q + ν)/2 is odd and (q − ν)/2 is even. So (q + ν)/2, q − ν and q are pairwise coprime. Hence there is
no prime t ∈ π(G) such that t | a for all a ∈ cs(G)− {1}.

Lemma 2.12. For each t ∈ π(q(q + ν)/2), Gt is abelian.

Proof. First we claim for each t ∈ π(q(q + ν)/2), we have Z(Gt) − Z(G) is nonempty. Let x be a
noncentral element of G such that Gt ≤ CG(x). Therefore |xG| ∈ {(q2 − 1)/2, q(q − ν)}, and so CG(x)
is free. By Lemma 2.2, CG(x) is either abelian or isomorphic to Us × Z(G)s′ , where Us is an s-group
for some prime divisor s of |G|.

Suppose that CG(x) is not abelian. So CG(x) = Us ×Z(G)s′ , where Us is an s-group and s ∈ π(G).
Note that Gt ≤ CG(x). If s 6= t, then Gt ≤ Z(G)s′ ≤ Z(G) which is impossible, by the fact that t is a
divisor of some conjugacy class size of G. Hence s = t and CG(x) = Gt × Z(G)t′ . So we can assume
that x is a t-element and we conclude that x ∈ Z(Gt)− Z(G).

Now we may assume CG(x) is abelian. Since Gt ≤ CG(x), it is clear that Gt is abelian and so
Z(Gt) = Gt. If Gt ≤ Z(G), then t does not divide any conjugacy class sizes, a contradiction. So our
claim is proved.

Let N = q(q2 − 1)/2. For each t ∈ π(q(q + ν)/2), we shall show that Gt is abelian by contradiction.
We assume that Gt is not abelian. For every y ∈ Z(Gt)− Z(G), we have CG(y) = Gt × Z(G)t′ . Hence
CG(Z(Gt)) = ∩y∈Z(Gt)CG(y) = Gt × Z(G)t′ . So there is no non-central t′-element centralizing Z(Gt).

Since Gt is not abelian, there is u ∈ Gt − Z(Gt). So Z(Gt) � CG(u)t. By cs(G), we infer that
|Gt| = Nt|CG(u)t| > Nt|Z(Gt)|, where either Nt = q or Nt = ((q + ν)/2)t.

If t ∈ π((q + ν)/2), then let s = p; otherwise if t = p, then choose s ∈ π((q + ν)/2). Pick
x ∈ Z(Gs) − Z(G). We have |G : CG(x)| ∈ {q(q − ν), (q2 − 1)/2}. Without loss of generality we may
assume CG(x)t � Gt. Note that |Gt : CG(x)t| = Nt and hence |CG(x)t| > |Z(Gt)|, which implies that
there is y ∈ CG(x)t − Z(Gt) ⊂ Gt. But we know that CG(x) is free and so either CG(x) is abelian or
CG(x) = Gs × Z(G)s′ . By the fact that |CG(x)t| > |Z(Gt)|, we deduce that CG(x) is abelain.

Note that Z(Gt) � CG(y). By the fact that CG(x) is abelian, we have CG(x) ≤ CG(y). Since CG(x)
is free and CG(y) � G, we have CG(x) = CG(y). Hence Z(Gt) ≤ CG(x) and so x centralizes Z(Gt).
Since x is a t′-element, it contradicts the above argument. Thus, Gt is abelian.
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Remark 2.13. By Lemmas 2.12 and 2.2, for every x ∈ G such that |xG| ∈ {(q2−1)/2, q(q−ν)}, CG(x)
is abelian.

Lemma 2.14. Let g ∈ G− Z(G). The following hold.

(i) If |gG| ∈ {q(q + ν), q(q + ν)/2}, then CG(g)/Z(G) is a π(q − ν)-group.

(ii) If |gG| = q(q − ν), then CG(g)/Z(G) is a π((q + ν)/2)-group.

(iii) If |gG| = (q2 − 1)/2, then CG(g)/Z(G) is a p-group.

Proof. (i) Assume g ∈ G such that |gG| ∈ {q(q + ν), q(q + ν)/2}. Let t ∈ π(q(q + ν)/2). Write
g = gtgt′ = gt′gt, where gt and gt′ are t-part and t′-part of g, respectively (it means gt is a t-element
and gt′ is a t′-element). We know CG(g) = CG(gt) ∩ CG(gt′). If gt 6∈ Z(G), then Gt ≤ CG(gt) and
|gGt | = |G : CG(gt)| divides |G : CG(g)| = |gG| which is impossible since by Lemma 2.12 we have |gGt | ∈
{(q2− 1)/2, q(q− ν)}. Hence gt ∈ Z(G). Now let x ∈ CG(g), be a t-element, for some t ∈ π(q(q+ ν)/2).
So CG(gt′x) = CG(x) ∩ CG(gt′). Hence |gGt′ | | |(xgt′)G| and so |(xgt′)G| ∈ {q(q + ν), q(q + ν)/2}.
Therefore similar to the above discussion we conclude x is central. So CG(g)/Z(G) is a π(q− ν)-group.
Thus part (i) is proved.

(ii) Let x be an element whose index is q(q − ν). By Remark 2.13, CG(x) is abelian. If there
is a p-element y ∈ CG(x) − Z(G), then CG(x) ≤ CG(y), and so |yG| divides |xG|, which contradicts
|yG| = (q2 − 1)/2.

Now we assume that there is a t-element y ∈ CG(x)−Z(G), for some t ∈ π(q− ν). By Remark 2.13,
CG(x) is abelian and free, it implies that CG(y) = CG(x). From the set of conjugacy class sizes and part
(i), it is clear that there exists a π(q− ν)-element z ∈ CG(y) whose index is q(q+ ν)/2 and centralizes a
Gs, for all s ∈ π(q − ν). Since CG(y) is abelian, we have CG(y) ≤ CG(z). So |zG| = |G : CG(z)| divides
|G : CG(y)| = |yG| = q(q − ν), a contradiction. Therefore CG(x)/Z(G) is a π((q + ν)/2)-group.

(iii) Let x ∈ G have index (q2−1)/2. If there is a t-element y ∈ CG(x)−Z(G) for some t ∈ π((q+ν)/2),
then by Lemma 2.12 CG(x) ≤ CG(y), and so |yG| divides |xG|, which is impossible, since |yG| = q(q−ν).

Now we assume that there is a t-element y ∈ CG(x) − Z(G) for some t ∈ π(q − ν). Since CG(x) is
free, it implies that CG(y) = CG(x). Again by part (i), there exists a π(q − ν)-element z ∈ CG(y) of
index q(q + ν)/2. Thus |zG| = |G : CG(z)| divides |G : CG(y)| = |yG| = (q2 − 1)/2, a contradiction.
Thus CG(x)/Z(G) is a p-group.

In the following, we set Ḡ = G/Z(G) and x̄ = xZ(G) ∈ Ḡ for every x ∈ G.

Lemma 2.15. The following hold.

(i) |Ḡ| = q(q2 − 1)/2,

(ii) Let x̄ and ȳ are an s-element and a t-element in Ḡ, respectively, when either s ∈ π(q − ν) and
t ∈ π((q + ν)/2), s = p and t ∈ π(q − ν), or s = p and t ∈ π((q + ν)/2). Then [x̄, ȳ] 6= 1.

(iii) G has Hall π(q − ν)-subgroups and Hall π((q + ν)/2)-subgroups.

Proof. (i) By Lemma 2.14, there exists x ∈ G such that |G : CG(x)|p = q, and |CG(x)/Z(G)|p = 1.
Hence, |G : Z(G)|p = q. Similarly we conclude that |G : Z(G)|t = ((q2 − 1)/2)t, for every prime
t ∈ π((q2 − 1)/2). Therefore, |Ḡ| = q(q2 − 1)/2.

(ii) Suppose that there are an s-element x̄ and a t-element ȳ in Ḡ such that x̄ȳ = ȳx̄, where
s ∈ π(q − ν), t ∈ π((q + ν)/2). Then we may assume x and y are an s-element and a t-element,
respectively. We have [x, y] ∈ Z(G). If o(x) = k, then [xk, y] = [x, yk] = 1, so x ∈ CG(yk) = CG(y)
since gcd(k, t) = 1. This is a contradiction by Lemma 2.14 (ii). We apply the same argument for the
pair (s, t) where either s = p and t ∈ π((q + ν)/2), or s = p and t ∈ π(q − ν), then we get another
contradiction.

6



(iii) By Lemma 2.14 (i) and (ii), Ḡ has Hall π(q − ν)-subgroups and Hall π((q + ν)/2)-subgroups.
Let K/Z(G) = CG(y)/Z(G) be a Hall π(q− ν)-subgroup of Ḡ, for some y ∈ G. So K/(Z(G)π(q−ν)′) is a
π(q − ν)-group. By Schur-Zassenhaus Theorem, there exists H ≤ G such that K = H n Z(G)π(q−ν)′ =
H × Z(G)π(q−ν)′ and H is a π(q − ν)-group. It is easy to see that H is a Hall π(q − ν)-subgroup of G.
We can discuss similarly to deduce that G has Hall π((q + ν)/2)-subgroups.

Lemma 2.16. Let π(q − ν)− {2} 6= ∅. Assume that H is a Hall π(q − ν)-subgroup of G. Then one of
the following holds.

(i) H = Q×A, where Q is a Sylow 2-subgroup of H and A is a normal abelian 2-complement of H,

(ii) H = Q n A, where Q is a Sylow 2-subgroup of H and A is an abelian 2-complement of H.
Furthermore, |xG| = q(q + ν) for every 2′-element x ∈ H − Z(G), and CG(x) is abelian for every
x ∈ H with |xG| = q(q + ν).

Proof. Pick y ∈ G such that |yG| = q(q + ν)/2. As we discussed in the proof of 2.15 (iii), CG(y) =
H × Z(G)π(q−ν)′ where H is the Hall π(q − ν)-subgroup of G. By the maximality of CG(y), we may
assume y is a t-element, for some prime t. Let x ∈ CG(y) be a t′-element. Note that there exists such
an element, since |π(q− ν)| ≥ 2. Since CCG(y)(x) = CG(xy) = CG(x)∩CG(y) ≤ CG(y) and from cs(G),
the index of x in CG(y) is either 1 or 2. Since H ECG(y), it follows that the index of every t′-elements
of H is 1 or 2.

First we assume the indices of all t′-elements of H are 1. So H has a central t-complement. If t 6= 2,
then H = T × A, where T is a Sylow t-subgroup of G and A is an abelian 2-complement of H. This
implies that CG(x) contains a Sylow 2-subgroup of G for all x ∈ H, and thus, |xG| = q(q + ν)/2, which
contradicts Lemma 2.14. So t = 2 and we have H = Q × A, where Q is a Sylow 2-subgroup of H and
A is an abelian 2-complement of H, as we claimed in (i).

Secondly, we assume the set of indices of t′-elements of H equals {1, 2}. By Lemma 2.3, we consider
the following two cases of t:

(a) If t 6= 2, then H = T × Q × A′, where T ∈ Sylt(H), Q ∈ Syl2(H) and A′ ≤ Z(H). From
cs(G), every 2′-element z ∈ H has |zG| = q(q + ν)/2 = |yG|. Thus, there must exist a 2-element x
such that |CG(x)| = |CG(y)|/2. For all 2′-elements z ∈ CG(x), by the minimality of CG(x) we have
CG(xz) = CG(x) ∩ CG(z) = CG(x) ≤ CG(z), which implies z ∈ Z(CG(x)). So by setting A = T × A′,
we have H = Q×A where A is abelian, as we claimed in (i).

(b) If t = 2, by Lemma 2.3, H has abelian 2-complements. Here we may assume that all non-central
2′-elements x ∈ H have |xG| = q(q+ ν), since if there exists a 2′-element x such that |CG(x)| = |CG(y)|,
then similar to case (a), we deduce (i) holds.

First assume that x ∈ H is a 2′-elements such that |xG| = q(q+ν). Then by the minimality of CG(x),
we have CG(x)2 ≤ Z(CG(x)). Since H has abelian 2-complements, CG(x) is abelian. Now let x be a 2-
element such that |xG| = q(q+ν). Let z ∈ CG(x) be a non-central 2′-element. Then CG(x) ≤ CG(z) and
so CG(x) = CG(z), by the fact that |CG(z)| = |CG(y)|/2 = |CG(x)|, for every non-central 2′-element z.
Since CG(z) is abelian, CG(x) is also abelian. Hence for every x with |xG| = q(q+ ν), CG(x) is abelian,
as we claimed in (ii).

Let |xG| = q(q + ν), for some x ∈ G. Then CG(x)π(q−ν) ≤ H, for some Hall π(q − ν)-subgroup H
and |H : CG(x)π(q−ν)| = 2. Thus CG(x)π(q−ν) E H. We also know that CG(x)π(q−ν) is abelian and
so CG(x)π(q−ν) has a normal 2-complement. Hence H has a normal 2-complement as well. Therefore
H = QnA, where A is the 2-complement of H and Q is a Sylow 2-subgroup of H and so (ii) holds.

Lemma 2.17. Let π(q − ν)− {2} 6= ∅. Then Ḡ ∼= PSL(2, q).

Proof. We shall show that Ḡ has a non-trivial partition. By Lemma 2.16, we have the following cases:
First, assume H = Q×A, where H is a Hall π(q− ν)-subgroup of G, Q is a Sylow 2-subgroup of G,

and A is an abelian 2-complement of H. So by well-known Wielandt’s Theorem (see [10, 9.1.10]), all
Hall π(q − ν)-subgroups of G are conjugate.
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Let β = {CG(x)/Z(G) : x is a non-central element of G such that CG(x) is maximal in the lattice
of centralizers of G}. Since the elements in β are either Hall π(q − ν)-subgroups, Hall π(q + ν)/2-
subgroups or Sylow p-subgroups of Ḡ, we can see that union of elements of β is a cover for Ḡ. Let
z ∈ CG(x)∩CG(y)−Z(G). By Lemma 2.14 and the maximality of CG(x), CG(y), we have |xG| = |yG|.
First, assume |xG| = |yG| ∈ {(q2 − 1)/2, q(q − ν)}. Since CG(x) is abelian by Remark 2.13, we have
CG(x) ≤ CG(z) and also by the maximality of CG(x), we conclude that CG(x) = CG(z). Similarly we
have CG(y) = CG(z) and so CG(x) = CG(y).

Now let |xG| = |yG| = q(q + ν)/2. As we discussed in the proof of Lemma 2.15 (iii) we may assume
CG(x) = H × Z(G)π(q−ν)′ and hence CG(y) = Hg × Z(G)π(q−ν)′ , for some g ∈ G.

Since A and Ag are central in CG(x) and CG(y), respectively, we have CG(z) contains A and Ag as
its subgroups. Note that, considering the structure of CG(x), we may assume z is a non-central π(q−ν)-
element. So |zG| ∈ {q(q + ν), q(q + ν)/2}, which implies that CG(z)π(q−ν) ≤ Hk, for some k ∈ G, by
using Lemma 2.14. Thus A is normal in CG(z), which implies that A = Ag. Since π(q − ν)− {2} 6= ∅,
we have 〈Q,Qg〉 ≤ CG(A) = CG(x). By the fact that Q is normal in CG(x), we have Q = Qg. Thus
CG(x) = CG(y) = H × Z(G)π(q−ν)′ . Therefore β is a partition for Ḡ.

Secondly, assume H = Q n A, where Q is a Sylow 2-subgroup of H and A is a normal abelian
2-complement of H, CG(x) is abelian for every x ∈ G with |xG| = q(q + ν), and |yG| = q(q + ν) for
every 2′-element y ∈ H − Z(G).

Let β = {CG(x)/Z(G) : x is a non-central element of G such that CG(x) is minimal in the lattice of
centralizers of G}. We claim that union of elements of β is a cover for Ḡ. It is obvious that all of the
elements of Ḡ, beside 2-elements whose indices are q(q + ν)/2, appear in the components of β. Assume
x is a 2-element whose index in G is q(q + ν)/2. Then H ≤ CG(x), for some Hall π(q − ν)-subgroup H
of G. Thus x ∈ Z(H). To fulfil the claim that the union of components of β covers Ḡ, it suffices to find
y ∈ H such that |CG(y)| = |CG(x)|/2, then x ∈ CG(y).

Let z ∈ CG(x) ∩ CG(y) − Z(G). We know that |xG| = |yG|, by Lemma 2.14. If |xG| = |yG| ∈
{(q2 − 1)/2, q(q − ν)}, then similarly to the first case we get CG(x) = CG(y). If |xG| = |yG| = q(q + ν),
then, by the fact that CG(x) and CG(y) are abelian, we have CG(x) ≤ CG(z) and CG(y) ≤ CG(z).
Thus either CG(x) = CG(z) = CG(y), or CG(z) = H × Z(G)π(q−ν)′ , for some Hall π(q − ν)-subgroup
H of G. The former case is what we wanted to prove, so we may assume the later case holds. Since
H has a unique 2-complement, we deduce that CG(x), CG(y) and CG(z) have the same 2-complement.
Let CG(x) = A × Q1 × Z(G)π(q−ν)′ and CG(y) = A × Q2 × Z(G)π(q−ν)′ , where A × Z(G)π(q−ν)′ is
the 2-complement of CG(x) and CG(y), and Q1 and Q2 are Sylow 2-subgroups of CG(x) and CG(y),
respectively. For u ∈ A − Z(G) we have |CG(u)| = |CG(x)| = |CG(y)|. Also CG(x) ≤ CG(u) and
CG(y) ≤ CG(u). Hence CG(u) = CG(x) = CG(y). Therefore β is a partition for Ḡ.

So by Lemmas 2.7 and 2.8, one of the following cases occurs:
Case 1. Similar to the argument we had in Theorem 2.9, we have Ḡ is not a p-group and also it is

not isomorphic to S4.
Case 2. Let Ḡ has a normal subgroup, say N , such that |Ḡ : N | = r, where r is a prime number

and N is nilpotent.
In this case N is one of the components of β and so |N | ∈ {q, (q − ν), (q − ν)/2, (q + ν)/2}, which is

not possible since |Ḡ/N | is prime.
Case 3. Ḡ is a Frobenious group.
Since the Frobenius kernel of Ḡ is nilpotent, we have K, the Frobenius kernel of Ḡ, is either a Sylow

p-subgroup of Ḡ, a Hall π(q − ν)-subgroup of Ḡ, or a Hall π((q + ν)/2)-subgroup of Ḡ, by Lemma
2.15 (ii). If H is a Frobenius complement of Ḡ, then (|K|, |H|) ∈ {(q − ν, q(q + ν)/2), ((q + ν)/2, q(q −
ν)), (q, (q2 − 1)/2)}, which is contradicting |H| | |K| − 1.

Case 4. Ḡ is isomorphic to Sz(2h), for some odd integer h ≥ 3.
Then |Ḡ| = |Sz(2h)| = 22h(22h + 1)(2h − 1). It is well-known that 2-elements in Sz(2h) does not

commute with any t-elements, for prime t different from 2. Hence q − ν = 22h, which contradicts the
hypothesis of this Lemma.
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Case 6. Ḡ is isomorphic to PGL2(rh), where rh ≥ 4.
Since |cs(PGL2(rh))| = 6, when rh is odd, we may assume r = 2. Hence 2h | q−ν and also q | 2h±1.

Hence 2h − 1 ≤ q ≤ 2h + 1 and so q = 2h ± 1. But we know that (q+ ν)/2 is odd and π(q− ν) 6= {2}, a
contradiction.

Case 7. Ḡ is isomorphic to PSL2(rh), where rh ≥ 4. If r is even, then, by the same discussion as
we had in Case 6, we produce a contradiction. So we may assume r is odd. If r - q, then rh | (q ± 1)
and q | (rh ± 1). Thus rh − 1 ≤ q ≤ rh + 1 and so q = rh ± 1, a contradiction. Therefore rh = q and
hence Ḡ ∼= PSL2(q).

Lemma 2.18. Let π(q − ν) = {2}. Then Ḡ ∼= PSL2(q).

Proof. Let q − ν = 2α, for some integer α. Then either q = p is prime, or q = 9. First, assume q = p is
prime. We show that Ḡ is a Zassenhaus group of degree p+ 1. We know that |Ḡ| = p(p2 − 1)/2.

Now we claim that either np(Ḡ) = p + 1 or np(Ḡ) = 1. Let np(Ḡ) = mt = kp + 1, where m, t and
k are integers such that m | (p + 1) and t | (p − 1)/2. If either m = p + 1 or m = 1, then t = 1, since
t ≡ 1 (mod p). So we may assume 1 < m ≤ (p + 1)/2. Then we can write t = (p − 1)/2m′, where
t ≥ 2 and hence 2m′ ≤ (p− 1)/2, since otherwise 1 < np(Ḡ) < p+ 1 and this is impossible. Considering
m(p − 1)/2m′ = kp + 1, we have p | 2m′ + m. Using the fact 2m′ ≤ (p − 1)/2 and m ≤ (p + 1)/2, we
conclude that 2m′ = (p− 1)/2 and m = (p+ 1)/2. Thus kp+ 1 = p+ 1 as we claimed.

If np(Ḡ) = 1, then Ḡ = H n P , where P ∈ Sylp(Ḡ) and H is a p-complement of Ḡ. We know that

CH(x) = 1 for every x ∈ P , by Lemma 2.15 (ii). Hence Ḡ is a Frobenius group, which contradicts
(p2 − 1)/2 = |H| | p− 1. So np(Ḡ) = p+ 1.

Now, let Ω = Sylp(Ḡ). Obviously Ḡ acts on Ω transitively and the stabilizer ḠP = NḠ(P ), for

every P ∈ Ω. Hence NḠ(P ) = H n P , where H is a subgroup of Ḡ whose order is (p − 1)/2. Since
P ∩NḠ(P0) = P ∩P0 = 1, for every P0 ∈ Ω−{P}, we infer that P acts on Ω−{P} transitively. So the
stabilizer of P , ḠP , acts on Ω − {P} transitively, which implies that Ḡ is doubly transitive. It means
|ḠP : ḠP0

∩ ḠP | = p for every P 6= P0 ∈ Ω.
So we can say that for every P 6= P0 ∈ Ω, ḠP ∩ ḠP0

is a p-complement of NḠ(P ) and so we may
assume ḠP ∩ ḠP0

= H, for some p-complement H of NḠ(P ). Note that NḠ(P ) is a Frobenius group,
by Lemma 2.15 (ii), and so NḠ(P ) = (

⋃
g∈P H

g)
⋃
P . Hence every p′-element in NḠ(P ) fixes at least

one Sylow p-subgroup in Ω − {P}. Thus, if we consider the action of ḠP on Ω − {P}, then we have
|Fix(h)| ≥ 1, for every p′-element of NḠ(P ). As we discussed, non-identity elements in P does not fix
any element in Ω− {P}. Now considering the following equation,

|NḠ(P )| = p+
∑

h∈NḠ(P )−P

|Fix(h)|,

we will have |Fix(h)| = 1. Therefore the elements in Ḡ fixes at most 2 points in Ω.
Let K E Ḡ such that K acts on Ω transitively and also KP = 1, for every P ∈ Ω. Since the action

of K on Ω is transitive, then |K : KP | = |Ω| = p + 1, for every P ∈ Ω. Therefore |K| = p + 1. Now
consider P nK. By Lemma 2.15 (ii), CP (k) = 1, for every k ∈ K. Hence P nK is a Frobenius group.
This implies that K is nilpotent and so K is a subgroup of either a Hall π(q − ν)-subgroup, or a Hall
π((q + ν)/2)-subgroup. So we conclude that |K| = p + 1 = q − ν = 2α. Now consider Ḡ = H n K,
where H is a 2-complement of Ḡ. Again we can see that Ḡ is a Frobenius group, which is contradicting
|H| - |K| − 1 = p. Hence Ḡ does not have any regular normal subgroup. Therefore our claim is proved
and Ḡ is a Zassenhaus group of degree p + 1. Now using Theorem 2.1 and from Lemma 2.15 (i), we
have Ḡ = PSL2(p), as wanted.

Secondly, let q = 9 and so |Ḡ| = 9.5.8. Thus either n3(Ḡ) = 1, n3(Ḡ) = 4, n3(Ḡ) = 40 or n3(Ḡ) = 10.
Similar to the first case we conclude that n3(Ḡ) 6= 1. Let n3(Ḡ) = 4. We know that Ḡ acts transitively
on Syl3(Ḡ). So for P ∈ Syl3(Ḡ), ḠP = NḠ(P ) = H n P , where |H| = 10. Moreover NḠ(P ) is a
Frobenius group, which contradicts 10 - 9 − 1. If n3(Ḡ) = 40, then CḠ(P ) = NḠ(P ), for P ∈ Syl3(Ḡ).
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Therefore Ḡ is 3-nilpotent and so Ḡ = P n K, where K is the 3-complement of Ḡ. As we discussed
before Ḡ is a Frobenius group and hence K is nilpotent, a contradiction. Hence n3(Ḡ) = 10.

We claim that every two Sylow 3-subgroups have a trivial intersection. On the contrary, assume
there exist P , R ∈ Syl3(Ḡ), such that S = (P ∩ R) has index 3 in P . By Lemma 2.4, we have
|NḠ(S)| = 9t, where t | 40 and t ≥ 4. Considering Lemma 2.15 (ii), we have |CḠ(S)| = 9. By using
Normalizer-Centralizer Theorem we have t ≤ 2, a contradiction. Therefore our claim is proved.

Now using the fact that every two Sylow 3-subgroups have a trivial intersection, similar to the first
case, we obtain G is a Zassenhaus group of degree 10 and so we have G ∼= PSL2(9), which is our desired
result.

The proof of Theorem 2.10 is an immediate consequence of Lemmas 2.17 and 2.18.

Theorem 2.19. Let G be a finite group. If cs(G) = cs(PSL2(q)), with q ≥ 7 odd, then G ∼= PSL2(q)×A,
where A is an abelian group.

Proof. By Theorem 2.10, it is enough to prove that either Z(G) = 1 or Z(G) is a direct factor of
G. We argue by minimal counterexample. So we assume G is a group with minimal order such that
cs(G) = cs(PSL2(q)) and Z(G) is not trivial and it is not a direct factor of G.

By Theorem 2.10 we have G′Z(G) = G and G′/(Z(G)∩G′) ∼= PSL2(q). Note that G′∩Z(G) = Z(G′),
since otherwise if x ∈ Z(G′)− Z(G), then x(G′ ∩ Z(G)) ∈ Z(G′/(G′ ∩ Z(G))), a contradiction. Now by
Lemma 2.5, we conclude that cs(G) = cs(G′).

We claim that G = G′. Assume, on the contrary G′ < G. But since G is a minimal counterexample
such that its center is not trivial and is not a direct factor of G and cs(G) = cs(PSL2(q)), either
Z(G′) = Z(G) ∩G′ = 1 or G′ = T × Z(G′) and T ∼= PSL2(q).

Assume the former case occurs. Then G ∼= G′×Z(G) ∼= PSL2(q)×Z(G), which is not possible by our
assumption on G. So we may assume the latter case holds. Therefore G = G′Z(G) ∼= (T×Z(G′))Z(G) ∼=
T × Z(G) which again contradicts our assumption on G. Hence G′ = G.

Now since G is perfect and G/Z(G) is simple, G is a quasi-simple group and so Z(G) ≤M(PSL2(q)),
where M(PSL2(q)) is the Schur multiplier of finite simple group PSL2(q). If q 6= 9, then |M(PSL2(q))| =
2 and since Z(G) is not trivial, we have Z(G) = M(PSL2(q)). Hence G is isomorphic to the unique
Schur cover of PSL2(q) which is G ∼= SL(2, q). By considering the set of conjugacy class sizes of SL(2, q),
we get a contradiction.

Now if q = 9, then G is a quotient of the Schur representation of PSL2(9). In fact, if 6 · A6 denotes
the Schur representation of PSL2(9), then G ∼= 6 ·A6, 3 ·A6 or SL2(9). By checking the conjugacy class
sizes of these groups, we produce a contradiction.
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