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29424; bKent State University, Department of Geology, Kent, OH 44242

(Received 23 May 2012; final version received 22 October 2012)

The complex composition and distribution of colour producing agents (CPAs) in
turbid aquatic environments such as the Western Basin of Lake Erie (WBLE)
presents a challenge to the application of remote sensing data for differentiating
among in-water constituents and estimating their concentrations independently.
In this study, multivariate procedures are applied to lab-based spectrophotometer
data to estimate the concentration of chlorophyll-a and suspended matters in the
WBLE. Principal Component Analysis of first-derivative transformed hyper-
spectral data from the spectrophotometer extracted three significant spectral
components for each cruise, explaining up to 88% of the spectral variability.
Spectral matching using reference spectra indicated that two of the extracted
patterns represent signatures of in-water constituents that govern the optical
properties of the WBLE, namely, cyanobacteria and diatoms associated with
green algae. The spectrophotometer data clearly revealed known spectral features
associated with phytoplankton, such as the absorption minima near 550 and
700 nm, which can be attributed to the minimum of absorption and fluorescence
of chlorophyll-a, respectively. The method also extracted the absorption peaks
due to chlorophyll-a, near 670 nm, and due to phycocyanin, near 620 nm.
Principal component regression of chlorophyll-a on the PC scores indicated that
63.4% of variation of chlorophyll-a in the WBLE can be explained by two
components. Factors 2 and 3 explain 60% of the joint spatiotemporal variability
of suspended matters in the WBLE. The results illustrate the potential of
multivariate technique applied to remote sensing data in isolating the patterns
that represent constituents in turbid Case 2 waters.

Keywords: chlorophyll-a; remote sensing; Lake Erie; PCA

Introduction

The Great Lakes in the United States are an invaluable natural resource, containing
about 20% of the Earth’s potable freshwater (Reynolds 1996). Although the smallest
by volume, Lake Erie is the most productive of the Great Lakes (Munawar and
Weisse 1989). The high productivity of Lake Erie, large population density (ca. 16
million people) in its watershed, and large percentage of agricultural land contained
within its drainage basin (ca. 63%) (USEPA 2006) have resulted in a significant
dependence by the local population on Lake Erie for recreational, industrial and
potable water needs. One of the most striking issues is the expanded seasonal
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depletion of oxygen in the hypolimnion of the central basin that has been termed
‘The Dead Zone’ (USEPA, 2009, 2010). An additional issue of concern is the
reemergence of toxic cyanobacteria blooms in the Western Basin of Lake Erie
(WBLE). These problems are of great concern due to embedded implications for
altered biodiversity, ecological services as well as for overall ecosystem health.

Distributions of phytoplankton in space and time have major implications for
water quality and ecosystem function. Water resource managers and policy makers
require effective water quality monitoring that is critical to address the question of
how various natural and anthropogenic factors affect the health of these
environments, and to characterize the onset and the temporal and spatial scale of
hypoxia and toxic cyanobacteria blooms. Obtaining these observations through in
situ methods is challenging for large water systems, such as Lake Erie, where
anthropogenic nutrient loads, water levels and global surface temperatures change.
Water quality assessments for Lake Erie are largely based on conventional in situ
measurements with limited spatial and temporal resolution. This makes it difficult to
understand the dynamics of colour producing agents (CPAs), such as phytoplank-
ton, total suspended matter (TSM) and coloured dissolved organic matter (CDOM).

Satellite-based measurements using multi-spectral sensors (MERIS, MODIS and
SeaWiFS) have better spatial coverage and temporal resolution to characterize
dynamic water quality properties, but require the development of algorithms that
relate the spectral reflectance measured by the sensor to the concentrations of CPAs
(Doerffer and Fischer 1994, IOCCG 2000, McClain 2009). Ocean satellites have
radiometric sensitivities optimized for measurements in turbid waters that normally
have low reflectance due to the high absorption by water and its constituents such as
CDOM. A potential limiting factor for satellite-based estimates of the concentra-
tions of in-water constituents is the depth of penetration at which the recorded
reflectance signal originates. According to the work by Ortiz et al. (unpublished
results) in the Western Lake Basin of Lake Erie, surface water conditions are
representative of the bio-optical properties over a broader range of depth. This
makes satellite applications to estimate concentrations of CPAs feasible.

CPAs change the optical properties of water by absorbing and scattering incident
light (Gordon and Morel 1983, Bukata et al. 1995). Chlorophyll-a concentrations
have been considered an important index in assessing water quality for coastal
waters in surveillance programs for harmful algal blooms (Glasgow et al. 2004).
Morel and Prieur (1977) have classified marine waters as Cases 1 and 2 based on
optical properties. In Case 1 waters, such as epipelagic ocean environments,
phytoplankton pigments govern the optical properties of the water. Many coastal
and most inland waters are classified as Case 2 waters, because in addition to
phytoplankton, constituents such as dissolved organic matter and suspended matter
occur in abundance. The optical properties of such waters are thus governed by
multiple components.

Application of satellite remote sensing methodologies to estimate concentrations
of individual CPAs requires the development of empirical or semi-empirical
algorithms. These algorithms are developed by relating the reflectance measured
remotely with the in situ observations of individual CPA concentrations. Ground
truthing is achieved by comparing spatially and temporally co-located satellite and in
situ observations. Spectral variations in the backscattered flux of Case 1 waters are
primarily related to concentration of chlorophyll-a, which varies as a function of the
phytoplankton population. In marine environments satisfactory relationships have

2 K.A. Ali et al.
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been described for chlorophyll-a concentration ranging between 0.02 and 78 mg/m3

(Gordon et al. 1988, Gons 1999, O’Reilly et al. 2000). In many coastal waters, the
water-leaving irradiance is affected by multiple optically active components. As
shown by Witter et al. (2009), optical detection of chlorophyll-a in the Case 2 waters
of the Western Basin of Lake Erie (WBLE) using Case 1-derived algorithms is
problematic. The challenge is attributed to optical heterogeneity of Case 2 waters
due to interference from higher concentrations of suspended matter and dissolved
organic matter.

One strategy for differentiating the overlapping and correlated in-water
constituents is utilizing both the visible and the infrared portions of the spectrum
(Gitelson 1992, Gons 1999). The combined effects of absorption due to
phytoplankton, suspended matter, dissolved organic matter and pure water produces
distinct spectral features in the visible and NIR (near-infrared). The main spectral
features of Case 2 waters include absorption maxima at the blue and red
wavelengths, and absorption minima at green wavelengths and in the NIR. Several
models have been developed to estimate the in-water constituents such as CDOM
independently (Binding et al. 2008, Becker et al. 2009). However, the models do not
account for the variability in the characteristics of the CPA with time and space.

The colour of Case 2 waters is influenced by multiple constituents with distinct
spectral properties that combine non-linearly. Hence, remote sensing of Case 2
waters is a non-linear multivariate problem, requiring a multivariate approach to
discriminate among, and estimate concentrations of, the various in-water
constituents. The spectral signature of the WBLE (Figure 2) has similar spectral
pattern with the line labelled as ‘a’ in Figure 1. The spectral discrepancies observed

Figure 1. Some examples of remote-sensing reflectance spectra from different types of
waters, including waters with (a) very high sediment and CDOM concentrations, (b) high
sediment and CDOM concentrations, (c) moderate sediment and CDOM with some
phytoplankton, (d) clear water, (e) waters with moderate chlorophyll and sediment
concentrations, (f) waters with moderate chlorophyll concentration. Lines labelled as a, b, c
and e represent Case 2 waters, while d and f are signatures of Case 1 waters (IOCCG,
20032000).
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from the reflectance spectra of the Medium Resolution Imaging Spectrometer
(MERIS) clearly indicate the presence of multiple biotic and inorganic components
in the WBLE (Figure 2). Based on this comparison, reflectance patterns from the
WBLE are consistent with those measured in Case 2 water.

A powerful multivariate statistical tool that can be applied in water quality
studies that have hyper-spectral data is Principal Component Analysis (PCA). PCA
seeks to decompose a data matrix into uncorrelated components by finding the
eigenvalues and principal components of the matrix, which is identical to solving a
system of linear equations. The principal components represent linear combinations
of the original variables that are uncorrelated to each other. This method maximizes
the variances of leading factors and reduces invalid factors in the matrix data, thus
reducing the complexity of multidimensionality of the matrix systems (Kaiser 1958).
Because PCA amounts to a series of matrix operations, it can be applied to extract
uncorrelated variance between variables, or in this case to extract relevant
information that explains the optical complexity of Case 2 waters. Decomposition
of the hyper-spectral remote sensing data measured on the Lake Erie filter samples
can be used to identify important water quality indicators such as chlorophyll-a
concentration, and estimate spatial and temporal variations across the WBLE (Ortiz
et al., unpublished results). The multivariate approach is also used to estimate TSM
in the WBLE.

In this study, spectral signatures of various in-water constituents that contribute
to the optical complexity of the WBLE are extracted using multivariate statistics.
The main objectives of the study are to (a) analyse the efficiency of remote sensing
data to detect the various CPAs in the WBLE and (b) examine the effectiveness of
multivariate regression techniques for predicting concentrations of chlorophyll-a and
TSM using remote sensing reflectance data.

Figure 2. Reflectance spectra (400–860 nm) recorded by the Medium Resolution Imaging
Spectrometer (MERIS) in the WBLE at pixels corresponding to 18 sampling stations. Pixel
resolution is 290 by 290 m. The spectra shows typical signatures of Case 2 waters with the high
absorption of CDOM in the blue region (440 nm), chlorophyll a in the red region (665 nm, red
absorption) and phycocyanin in the yellow region (620 nm). The peak centred at 550 nm
represents effect of backscattering from suspended matter.

4 K.A. Ali et al.
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Data and methods

Study area

The Western Basin of Lake Erie (83 to 82.5 W and 41.2 to 41.7 N, Figure 3), with an
average depth of 7 m, is shallow enough to have dramatic wind- and wave-driven
turbidity. Its relatively warm temperature makes it conducive to high biologic
productivity. In our study area, a number of rivers serve as conduits for fluxes of
nutrients and sediments into the WBLE, influencing water clarity, particularly near
the mouths of the Sandusky and Portage rivers (Figure 3). In recent years, oxygen
depletion and the extent of both harmful and nuisance algal blooms have increased
in Lake Erie, despite a general decline in eutrophication (Budd et al. 2002, Rinta-
Kanto et al. 2005). Because Lake Erie has dynamic nutrient and trophic interactions,
satellites can enhance monitoring efforts. The current generation of imaging satellite
sensors can synoptically monitor large areas at relatively high spatial resolution with
repeat sampling intervals ranging from days to weeks, depending on the cloud cover.

Figure 3. The Western Basin of Lake Erie and the locations of 18 sampling stations visited
during multiple cruises of Research Vessels Gibraltar and Erie. The lake interacts with
terrestrial environment through fluxes of the Sandusky, Portage, Toussaint and other rivers
such as the Maumee and Detroit, which drain into the far western side of the basin (data not
shown). The inset shows, the Lake Erie bathymetry.
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Data acquisition

In the summers of 2009 and 2010, in situ data and water samples were collected from
the Western Basin of Lake Erie aboard the Research Vessels Gibraltar and Lake Erie
Monitor during cruises in June, July, August and September. A total of 108 stations
were visited between the two summer periods. Stations were located between
Sandusky Bay and Middle Bass Islands (Figure 3).

Water quality parameters such as chlorophyll-a, oxygen, pH, total dissolved
solids, temperature and electrical conductivity were measured using a HACH
Hydrolab along a vertical profile at 0.1 m resolution between 0 and 1 m;
measurements were taken at 0.5 m resolution below 1 m depth. For this study, the
in situ chlorophyll-a data were integrated to 0.5 m depth. Secchi depth was also
recorded at each station using a standard Secchi disk with alternating black and
white quadrants. A depth integrated 1-litre water samples were collected at each
station and filtered through pre-weighed 0.47 mm Glass Fibre Filters (GF/F) to
collect the lake water residue. The samples were wrapped with aluminium foil to
inhibit radiation interaction and stored in a cooler with ice in the dark. Dry
particulate mass was measured gravimetrically with accuracy of 0.1 mg to estimate
the TSM. The filtered samples were placed below a high intensity 20 mm diameter
Spectralon integrating sphere and reflectance spectra were recorded between 250 and
2500 nm using ASD lab-based Pro Full-Resolution ultraviolet/visible/near-infrared
(UV/VIS/NIR) spectroradiometer. Spectra were measured at 2 nm intervals in the
UV-VIS range and 4–10 nm intervals in the NIR range. A Spectralon reference panel
was used for white referencing. Percent reflectance was transformed to Log (1/
Reflectance) units. To enhance signal to noise ratios, the records for each sample
were obtained by averaging 800 individual measurements of the spectrum. The
absorption values were corrected for the GF/F filter background using averaged
measurements of the blank filters.

Methodology

Principal component analysis is a multivariate procedure that involves the
transformation of a number of possibly correlated variables into a smaller number
of uncorrelated indices (eigenvectors). In this remote sensing application, PCA
accounts for the correlation between the signals in different spectral channels and
enhances the potential discrimination and reconstruction accuracy of retrieved
constituents. For this study, the data matrix composed of m rows, where m is the
number of stations sampled (18 stations per cruise, total of five cruises) and n
columns, where n is the number of spectral bands (64 bands ranging from 360 to
1000 nm). The Principal Components (PCs) returned by PCA represent combina-
tions of co-varying data. These are ordered based on the percent of total variance
that they explain. In most applications, a small number of PCs explain the bulk of
the total variance, with remaining PCs representing noise. Each PC is a linear
combination of the original variables, potentially describing a different source of
variation. The largest or 1st PC is oriented in the direction of the largest variation of
the original variables and passes through the centre of the data. PCA is commonly
used in environmental applications, including surface and ground water quality
studies (Yu et al. 1998, Helena et al. 2000, Tauler et al. 2000, Petersen et al. 2001,
Parinet et al. 2004, Ying Ouyang 2005). Works by Balsam and Deaton (1991),
Deaton and Balsam (1991), Mix et al. (1995) and (1999) and Harris and Mix (1999)

6 K.A. Ali et al.
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have demonstrated the utility of this method for extracting information regarding
variations in sediment composition both spatially and temporally. The method
works equally well with CPAs, allowing isolation of spectral patterns that are
correlated in space and time across each cruise track. In many cases, the spectral
patterns identified by PCA can be interpreted physically based on known spectral
signatures (Ortiz et al. 1999, 2004, 2009).

The reflectance spectra are sensitive to background noise that may alter the shape
of reflectance spectra. These effects can be minimized by calculating the first
derivative of the reflectance spectra (Ortiz et al. 2009, Ortiz 2011). We conducted
PCA on the correlation matrix obtained from a data matrix of first-derivative-
transformed Visible-Infrared (VIR) spectra. The columns of each data matrix
explicitly define the 1st derivative transform represent wavelength in 10 nm
increments and the rows represent a station in one of the cruise tracks. Data from
all of the cruises were combined into a single matrix to allow evaluation of the joint
variation in space and time within the dataset, the data matrix contained a total of 89
rows. Data from one station for a particular cruise were removed due to instrument
errors. PCA was also conducted for each cruise date individually to evaluate the
temporal dynamics of the leading optical components.

A varimax rotation was applied to the component matrix extracted from the
correlation matrix (Kaiser 1960). This allows sufficient orthogonality between the
derived component axes to enable spectrally distinguishing among several
independent in-water constituents. Use of the correlation matrix weights each
band equally within the analysis since the correlation coefficient is the cross product
of the z-scores of the two bands. In this study, only factors exhibiting an eigenvalue
of over 1 were retained (Kaiser 1960). Prior to conducting the PCA calculation, a
standard normal variate transformation was applied to the data to remove a bias due
to concentration differences between stations. The trend due to concentration is
removed across the wavelength (l) using the following mathematical expression
(Barnes et al. 1989):

SNVðlÞ ¼
ðyðlÞ � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ðyðlÞ��yÞ2

n�1

q ð1Þ

In remote sensing application, the ability of PCA to discriminate among the
multiple in-water constituents is attributed to its capability to resolve for the satellite
signal variability caused by the constituents including interference from the
atmosphere. By truncating the noise factors, the atmospheric interference and
stochastic errors, PCA reduces the dimensionality of the dataset to that of the
significant or leading factors that represent only signals caused by in-water
constituents. Theoretically, some components of atmosphere interference may
come out as a leading mode of PCA. However, in practice, this does not happen
because the atmospheric correction procedures applied during pre-processing of the
data remove much of the systematic atmospheric interference (Doerffer and Schiller
2008, Witter et al. 2009). The communality of the PCA identifies the variance in each
input variable explained by the varimax-rotated factors extracted from the data set.

To identify the origin of the factors, the resulting factor loading patterns were
compared with the centre-weighted derivatives of plant pigment reflectance spectra
for algal groups using spectra from Moberg et al. (2002) and Toepel et al. (2005) and
mineral diffuse spectral reflectance signatures from known standards measured in
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our laboratory or available from version 5 of the USGS Digital Spectral Library
(Clark et al. 2003). This is analogous to X-ray diffraction methods that use peak or
whole spectrum matching methods to compare samples against known standards
(Will 2006).

Results and discussions

Figure 4 represents the reflectance spectra recorded between 400 and 2500 nm using
a laboratory-based spectrophotometer. The reflectance values are highly variable in
the visible and NIR range. The blue-green spectral range shows reflectance patterns
typically observed in turbid waters (Gitelson et al. 2000, Schalles et al. 2002,
Dall’Olmo and Gitelson 2005). These patterns reflect the effects of multiple factors
including absorption by phytoplankton, CDOM, and scattering due to SM.
Reflectance peaks near the red/NIR edge and absorption peaks near 620 and
670 nm are apparent; these peaks confirm the presence of phytoplankton biomass.
The red/NIR peaks were much higher than the green peaks for chlorophyll-a
concentrations 41.5 mg/l. The absorption minima near 550 nm and the maxima

Figure 4. Reflectance spectra (400–2500 nm) generated using laboratory-based ASD
spectrophotometer for samples collected during the four research expeditions. The
absorption effects of CDOM, chlorophyll a and phycocyanin (PC) are observed in the
visible range (400–700 nm). The trough near 440 nm is due to high absorption due to CDOM
and phytoplankton reflects strong absorption due to CDOM and phytoplankton, toughs at
620 and 675 nm represent the presence of PC and chlorophyll a pigment. High reflectance
values near 550 nm and beyond 720 nm occur due to the combined effects of backscattering
from suspended material and the minimum absorption by plant pigments. The three line
markers indicate the green peak near 550 nm, the 620 nm absorption due to PC, and the red
absorption near 675 nm due to chlorophyll a.

8 K.A. Ali et al.
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near 670 nm were more distinct for samples representing stations closer to Sandusky
Bay.

The centre-weighted first derivative of the reflectance spectra minimizes back-
ground noise and accentuates absorption features in the visible and NIR. This
reveals troughs at 410 nm, peak at 460 nm, a broad peak centred at 550 nm, a
trough at 672 nm and a peak at 710 nm in the visible range (Figure 5, inset).
Hydroxyl absorption is present at 1400 and 1910 nm indicating the presence of
inorganic suspended sediments (Figure 5) (Ortiz et al. unpublished results, Ortiz
et al. 2009).

The ability of chlorophyll-a to fluoresce is the basis for the spectrophotometer
capable of measuring the analyte in situ. In the WBLE, the average in situ
concentration of chlorophyll-a was 5.68 mg/l in June 2009 and concentrations during
September period ranged between 4.96 and 9.64 mg/l, with an average concentration
of 8.07 mg/l. Stations 19 and 20 contributed to the high variability during the
September 2009 cruise and appeared as outliers in the dataset. Average concentra-
tions on July 8th and 27th of 2010 were 6.05 and 7.45 mg/l, respectively. In
September of 2010, average chlorophyll-a concentration was 7.23 mg/l (Figure 6(a)).

The standard deviation of the chlorophyll-a concentration decreases from early
summer period to late summer period for both 2009 and 2010 (Table 1). Relatively
high chlorophyll-a concentrations were recorded at stations, 17, 19 and 20. These
stations represent the waters of Sandusky Bay which is heavily influenced by

Figure 5. Centre-weighted first derivative of the reflectance spectra in Figure 2.2, the
derivative removes and accentuates absorption features in the visible and NIR. The NIR
absorption features between 1400 and 2500 nm correlate well with suspended sediment. The
most prominent of these is at 1910 nm. The inset to Figure 3.5 illustrates prominent features in
the visible range, including absorption troughs at 440, 620 and 675 nm, and a fluorescence
peak near 710 nm.
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Table 1. Statistics of chlorophyll a and TSM in the WBLE.

Cruise dates

Average
chlorophyll
a (mg/l)

Standard
deviation

Average s
TSM (mg/l)

Standard
deviation

24 June 2009 5.68 1.76 7.46 5.28
2 September 2009 8.07 0.98 10.75 8.02
8 July 2010 6.05 2.716 8.1 8.07
28 July 2010 7.45 1.08 8.12 6.45
13 September 2010 7.23 0.79 8.08 4.96

Note: A low concentration of chlorophyll a is obtained during early summer and the concentration
increases throughout summer period. Similar pattern is observed for TSM.

Figure 6. Plots of concentrations of water constituents along the cruise track: (a) chlorophyll
a concentrations in mg/l at each station and (b) gravimetrically estimated TSM in mg/l at each
sampling point. Relatively higher concentrations of the CPAs are recorded in the Sandusky
Bay. Red horizontal bars represent average concentrations and the red vertical lines are
standard variation of the concentrations.

10 K.A. Ali et al.
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terrestrial influx via the Sandusky River that loads significant nutrients. The high
standard deviation in chlorophyll-a during the early summer period reflects the
optical difference between the waters of Sandusky Bay and the central WBLE.
During the summer, prolonged periods of strong sunlight and the continuous input
of nutrients allows expansion of algal blooms into the central WBLE (Becker et al.
2009). Moreover, turbulent mixing between the terrestrially influenced Sandusky
Bay and the central WBLE water, coupled with wind-induced mixing homogenizes
the water resulting in lower standard variation in the concentrations of the in-water
constituents across the basin. The spatial and temporal variability of the
concentrations of TSM in the WBLE is similar to that of chlorophyll-a. Higher
than average values of TSM are recorded in early summer at the stations
corresponding to Sandusky Bay relative to the stations representing the central
WBLE, indicating difference in the optical properties between the WBLE and
Sandusky Bay. The standard deviation of TSM among the sampling stations
decreases over the summer period (Figure 6(b)). This signals lake circulation that
involved material advecting and mixing throughout the WBLE.

PCA analysis of the laboratory-based VIR derivative spectra

The centre-weighed first-derivative spectra highlight fine-scale differences in the
reflectance spectra, particularly between 600 and 700 nm (Figure 5). Application of

Table 2. Descriptive statistics of selected principal components.

Percentage of variance after Varimax rotation

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9 PC10

Variability (%) 42.4 31.1 14.3 7.5 2.8 0.7 0.4 0.2 0.2 0.1
Cumulative (%) 42.4 73.5 87.8 95.3 98.1 98.8 99.2 99.4 99.6 99.8

Note: This represents the joint spatial and temporal optically variability across the WBLE during summer
of 2009 and 2010. The first four principal components represent approximately 95% of the optical
variability observed during the two summer periods.

Figure 7. The ‘scree plot’ represents eigenvalues scaled as the percentage of variance
explained by each factors. The first three factors (F1, F2 and F3) explain about 88% of optical
variability. Factors beyond the F3 represent background noise and instrumental error, and
therefore can be discarded reducing the dimensionality of the dataset.
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varimax-rotated PCA to the derivative-transformed reflectance spectra for the 2009
and 2010 cruises produced three leading principal components with eigenvalues
greater than one. The leading factors are associated with their empirical orthogonal
factors that explain most of the joint spatiotemporal variability observed in the
WBLE (42.4, 31.1 and 14.3%, respectively) (Table 2). The number of significant
factors can also be inferred from the ‘scree plot’ (Figure 7). PCs with eigenvalues less
than one did not give interpretable factors and therefore were not considered in this
study. The factor loading values sharply decrease within the first three principal
vectors and then slowly stabilize for the remaining ones which may contain a great
deal of interference stochastic error, and therefore are discarded. This procedure
contributes to dimensionality reduction in the data matrix while preserving
relationships that exists in the data. The presence of multiple factors with high
percentage of signal variability suggests that the optical variability observed in the

Table 3. Shows the PCAs with leading PC patterns, the corresponding factor loadings, which
represent the largest amount of variance extracted by each factor and the variance percentages
for each principal component.

PCA results on first-derivative hyperspectral data

Factors with significant loads within each Principal components
PCA with 35 centercentre weighed first derivative spectrophotometer bands
Rotation sum of square loadings

PCs Bands (nm) Factor Loadings Total Variance (%)
20.26 400 0.759 42.4

410 0.830
420 0.862
430 0.893
440 0.614
570 0.797
580 0.814
590 0.842
600 0.838
610 0.662
620 0.517
640 0.521
660 0.421
670 0.511
690 0.580
700 0.631

6.28 450 0.889 31.1
460 0.819
470 0.935
480 0.901
490 0.892
500 0.726
510 0.574
520 0.459
680 0.418

1.96 530 0.338 14.3
540 0.464
550 0.557
560 0.725
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Western Basin of Lake Erie is attributed to multiple, independent constituents
described by the various orthogonal vectors, further confirming the categorical
classification the WBLE, as Case 2 water type.

Table 3 shows the results of the general and specific PCs with the leading
factor loadings, the corresponding eigenvalues, which are the amount of variance,
extracted by each factor, and the variance percentages (accounted for)
corresponding to the principal components. The factor loadings indicate the
significant bands contributing to each PC. The loadings express the correlation
between the hyper-spectral bands and the newly formed PCs. The communality,
which is the proportion of variation in each hyper-spectral band explained by the
PCs, is greater than 0.85 for all the bands, indicating that most of the optical
variability detected by each band is explained by the PC model. The total
communality is 27.2 of 30 and the proportion of the total optical variation
explained by the three factors is 88%.

Plots of the first three factor loadings (PCs) as a function of wavelength
indicate the spectral patterns of the major in-water constituents that governed the
optical variability across the WBLE during the summer of 2009 and 2010. The plot
clearly indicates the critical bands contributing for each factor (Figure 8). Factor 1
is heavily influenced by the blue (400–460 nm), green (560–640 nm) and red region
(670–680 nm). The second factor represents the variance contribution from the
signals in the region between 450 and 560 nm, high loading to this factor also
comes from 680 nm. Maximum loading for the third factor mainly comes from the
green region (520–560 nm).

Spectral matching of the derived eigenspectra as a function of wavelength with
derivative-transformed reflectance spectra for known classes of in-water constituents
provides a means of identifying the eigenvectors. This approach indicates that the
first principal vector represents the cyanobacteria population (Figure 9(a)). The
second principal vector, which describes 31.1% of the optical variability observed in
the WBLE, corresponds to diatoms associated with cyanobacteria signalling the
absorption features due to phycobilins (Figure 9(b)). The third factor represents a
more complex mixture of phytoplankton biomass and oxy hydroxides (Figure 9(c)).
The importance between the first two principal vectors flipped when performing

Figure 8. Plots of principal factors as function of wavelength. The three eigenvectors account
for approximately 87% of the optical variability observed in the WBLE during the summer
season of 2009 and 2010. These plots represent the first-derivative spectral signature of the
various water constituents.
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factor analysis excluding samples from Sandusky Bay. This indicates that the
Sandusky Bay is optically different from the open water of the WBLE. These results
are consistent with those obtained from previous studies in the WBLE (Ortiz et al.,
unpublished results).

Figure 9. Factor loadings for the PCA and selected reference derivative spectra: (a) the first
factor relates to cyanobacteria, (b) the second factor relates to diatoms and cyanobacteria, (c)
the third factor relates to a mixture of cyanobacteria and goethite, an iron oxy-hydroxide
component of the suspended sediment.
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Spatial variations of the CPAs

A plot of the factor scores, representing each vector space, against station label
indicates the station’s contribution towards each principal factor. This in turn
indicates the dominant type of CPAs along the cruise track (Figure 10).

The first component, cyanobacteria, is dominant in Sandusky Bay, and its
significance decreases towards the stations in the central WBLE. This suggests a
heavy presence of riverine algae discharged into the Sandusky Bay. Additionally,
nutrient loading from the rivers supplies the required nutrients for cyanobacteria,
increasing lake productivity and causing algal blooms (Becker et al. 2009, Budd et al.
2002). In the central WBLE, relatively higher factor 1 scores were computed for
Stations 3 and 4, both are stations closer to the outlets of the Toussaint and Portage
Rivers, further suggesting the influence of terrestrially derived algal components in
the lake water quality. The concentration of the cyanobacteria increases between
June and July. Factor score values for the cyanobacteria are low during late summer
or early fall period. The relatively lower September temperatures coupled with
reduced amount of nutrients in the water inhibit algal growth leading to shrinkage of
the cyanobacteria community. Water temperatures in July were approximately 258C
and by late summer decreased to 158C (NOAA, http://www.erh.noaa.gov/buf/
laketemps/laketemps.php). In 2009, during summer, input concentrations of
phosphorus and nitrate via the Maumee river plume dropped from an average of
0.092 and 10.15 mg/l, respectively, to 0.01 and 0.01 mg/l in late summer, respectively
(NCWQR, http://www.heidelberg.edu/academiclife/distinctive/ncwqr). The second
factor represents the variations of the diatoms associated with blue-green algae.
Factor 2 scores are generally lower in Sandusky Bay than in the central WBLE,
suggesting that these are more dominant members of the community in the central
WBLE.

The third component represents a complex mixture of iron-bearing oxide
minerals and blue-green algae and shows a general increase in its importance from
the central WBLE to the Sandusky Bay. Sandusky Bay and stations 3 and 4

Figure 10. Factors scores from the PCA model. The importance of each component at each
station is proportional to its magnitude; the sample locations are as defined in Figure 2.3. The
data are presented in chronologic order with the earliest cruise on the left.
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represent aquatic environments that are heavily influenced by terrestrial influx as a
result of their close proximity to river discharge zones (Figure 3). These
environments showed higher values in the factor 3 scores which suggest that the
third PCA component represents optical variability attributed to the terrestrially
derived suspended matters. Factor 3 shows a general decreasing trend over the
summer period which may be associated with the decrease in discharge rates of the
Sandusky River during the same period. Sandusky River discharge decreased from
approximately 28.3 m3/sec in early spring of 2010 to 1.1 m3/sec in late summer of
2010 (USGS, http://waterdata.usgs.gov). The relatively higher factor scores in the
Sandusky Bay for July 2010 cruise data may be associated with high discharge event
in the days preceding the cruise.

Temporal variability of the CPAs

In order to assess the temporal dynamics of CPAs, the spectral reflectance matrix
data were divided into specific cruise periods representing early and late summer.
In 2009, cruises were conducted in late June and early September. In 2010, cruises
were conducted between mid-July and early September. Varimax-principal
component analyses were then performed for each of the four cruise periods.
Factor loadings are plotted as a function of wavelength, indicating the spectral
pattern of the principal in-water constituents that governed the optical variability
across the WBLE during these specific periods. As discussed earlier, spectral
matching was determined based on the reference library spectra (Figures 11
and 12).

PCA of the 2009 first-derivative transformed reflectance data indicates that
maximum variance occurs due to the presence of blue green algae (Figure 11(a)).
Factor 2 represents the diatoms which form the phytoplankton community in the
central WBLE (Figure 11(b)). The third factor indicates optically complex signal that
relates mixture of terrigenous oxide minerals and riverine cyanobacteria (Figure
11(c)). The third PC component for September of 2009 lack signatures of inorganic
sediments (Figure 11(f)). This is possibly the result of the low discharge rate of the
Sandusky River during September of 2009 (52.8 m3/sec, http://waterdata.usgs.gov)
leading to low volume of material influx, and the settlement of the suspended clays to
the benthic environment.

Close observation of Figures 11(a) and (d) shows that optical properties of the
WBLE changed throughout summer of 2009. In early summer, the optical
property of the WBLE was primarily controlled by cyanobacteria; however, by
late summer (September) goethite became equally important and showed up in
PC one. The magnification of clay mineral signal is primarily due to the
significantly lower concentration of phytoplankton in the water column during
the late summer or early fall period of 2009. Varimax-PC analysis of the 2010
optical data gave eigenvectors similar to the 2009 data. Spectral patterns for 2010
(Figures 12(a) and (d)) show that cyanobacteria remained as the primary optical
constituent throughout the summer period. Records of 2010 Sandusky River
discharge show that the discharge was significantly high compared to 2009 and
fluxes of high discharge rates remained until August of 2010. Higher and
persistent river flux allows for continuous loading of riverine algae community
and nutrients, increasing the productivity of the lake and hence phytoplankton
play major role in defining the optical properties of the WBLE.
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Prediction of CPAs

One of the major strengths of performing principal component regression (PCR) as
oppose to using least-squares methods is it removes the effects of collinearity that
may exist between the spectral bands. An important index to justify the removal of
collinearity effects between the PCA-based uncorrelated variables, i.e., the factor
scores, is their correlation. Table 4 shows that the correlation coefficients between all

Table 4. Correlation analysis between factor scores.

Correlations coefficients

Factor 1 Factor 2 Factor 3
Factor 1 1.00
Factor 2 0.00 1.00
Factor 3 0.00 0.00 1.00

Note: Dependent variable: chlorophyll a.

Table 5. Collinearity indices of three standardized principal component regression models
for chlorophyll a prediction.

Variance Proportions

Model Dimension Eigenvalue
Condition
Index (Constant) Factor 3 Factor 1 Factor 2

1 1 1.05 1.00 0.47 0.47
2 0.95 1.05 0.53 0.53

2 1 1.19 1.00 0.00 0.41 0.39
2 1.02 1.08 0.89 0.03 0.05
3 0.78 1.24 0.11 0.56 0.55

3 1 1.57 1.00 0.00 0.10 0.04 0.16
2 1.19 1.15 0.00 0.16 0.31 0.00
3 1.02 1.24 0.89 0.01 0.01 0.00

Note: Dependent variable: TSM.

Table 6. Collinearity indices of three standardized principal component regression models
for TSM prediction.

Model Dimension Eigenvalue
Condition

index

Variance proportions

(Constant) Factor 3 Factor 2 Factor 1

1 1 1.04 1.02 0.50 0.50
2 1.02 0.95 0.50 0.50

2 1 1.20 1.00 0.14 0.40 0.47
2 1.01 1.10 0.81 0.18 0.01
3 0.86 1.23 0.06 0.42 0.52

3 1 1.14 1.00 0.14 0.39 0.46 0.00
2 1.24 1.12 0.21 0.05 0.02 0.72
3 1.02 1.21 0.59 0.15 0.00 0.27

Note: Dependent variable: chlorophyll a.
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PCs are 0. PC regression models used for the prediction of chlorophyll-a and TSM
have eigenvalues and condition indices close to 1 (Tables 5 and 6). All of these
collinearity statistics suggest that all principal components are uncorrelated of each
other. A general equation that shows the form of the regression model that is used is
given by:

bYi ¼ a bYi ¼
X
i

þbiFi ð2Þ

where, Ŷi is predicted value, a is a constant, bi is the regression coefficients and Fi

is factors.

PCR against chlorophyll-a concentrations

The score values obtained from PCA are used as uncorrelated variables in the
stepwise multiple linear regression analysis to determine the most significant PCs for
predicting the concentrations of chlorophyll-a. Table 7 indicates the zero collinearity
of the uncorrelated variables using statistical measures such as the tolerances and
Variance Inflation Factors (VIFs), both of which are equal to 1.

Factors that significantly increase the coefficient of determination are included in
the model. Accordingly, scores 1, 2 and 3 were found to have significant linear
relationship with chlorophyll-a (Table 7). The regression statistics shows that 70% of
the chlorophyll-a variation is explained by the linear combination of factor scores 1,
2 and 3. The addition of 4th PC scores in the model raised the coefficient of
determination to 72%. However, this difference is not statistically significant,
P 4 0.05. Figure 13 shows the regression between predicted chlorophyll-a values
from PC regression model and the chlorophyll-a concentrations. The model provides
R2 of 0.70 for chlorophyll-a prediction and RMSE ¼ 11%.

A total increase in chlorophyll-a level would lead to a decrease in significant
variables of score 1, namely, derivatives at 400, 410, 420, 440, 580, 610, 660 and
670 nm. On the other hand, chlorophyll-a abundance would cause an increase in
derivative values at 500, 510, 530, 540, 550, 560 and 680 nm. This is consistent with

Table 7. Stepwise regression analysis of PC scores against chlorophyll a (n ¼ 89).

Model

Regression
coefficients

t P

Collinearity
statistics

R2 (%)B SE Tolerance VIF

1 (Constant) 6.98 0.14 50.35 0.00 48.8
Factor 1 1.41 0.15 9.09 0.00 1.00 1.00

2 (Constant) 7.01 0.12 60.14 0.00 63.4
Factor 1 1.57 0.13 11.82 0.00 1.00 1.00
Factor 3 70.79 0.13 –6.09 0.00 1.00 1.00

3 (Constant) 7.12 0.11 64.72 0.00 70.3
Factor 1 2.03 0.17 12.32 0.00 1.00 1.00
Factor 3 71.16 0.15 77.80 0.00 1.00 1.00
Factor 2 0.95 0.23 4.17 0.00 1.00 1.00

Note: The first three principal components account for 87.8% of the optical variability in the WBLE
during the summer period of 2009 and 2010. The regression model explains about 70% of the chlorophyll
a variation. Dependent variable: TSM.
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chlorophyll-a’s spectral features, i.e., absorption in the Soret bands and the red
absorption near 670 nm. The positive relation between chlorophyll-a abundance and
the back scattering recorded in the range of 500 to 560 nm is due to minimum
absorption capacity of the pigment and backscattering effects from cell walls, the
maxima observed at 680 nm is the fluorescence effect due to chlorophyll-a.

PCR against TSM concentrations

Principal component regression analysis is performed between the uncorrelated
variables, PC scores, and dependant variable, TSM. The first three factors are found
to have significant correlation with the TSM, P 5 0.05 (Table 8). Approximately,
75% of the TSM variability is accounted for by the linear multivariate regression
analysis using the first three principal factors (Figure 14), R2 ¼ 0.75 and
RMSE ¼ 30%.

The TSM variability in the WBLE is mainly explained by the third principal
factor and the coefficient of determination increased with the addition of factors 2
and 1. The PCs contribute significantly to the performance of the model with all
three factors having correlation coefficients statistically different from zero. TSM has
a positive impact on factor 3, while it possesses a negative correlation with PC Scores
2 and 1. In other words, TSM levels would be expected to increase the values of
Score 3, which refers to the reflectance level recorded at 540, 550 and 560 nm. The
increase in reflectance in the green region due to suspended matter is corroborated in
many previous works (Ortiz et al. unpublished results, Gordon and Morel 1983,
Schalles 2006). Regression analysis between PCs and TSM shows that factors 2 and 1
have negative coefficients (Table 8). Factor 1 represents the Soret bands and the red
region. Factor 2 represents mainly the spectral regions 440–510 nm. Figure 14
illustrates that the regression is strongly controlled by the outliers. These high value
data represent concentrations of the TSM in the turbid waters of Sandusky Bay, and
therefore are considered to be valid measurements that should be incorporated in the
model.

Figure 13. Regression analysis between predicted chlorophyll chlorophyll-a levels based on
model 3 and in-situ chlorophyll a values.
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The presence of multiple constituents in the TSM in the WBLE causes various
levels of absorption and scattering across the spectrum. The inverse relationship
between the reflectance near the Soret bands and TSM signals the presence of
multiple constituents including CDOM which may be bound to filtered particles
as suggested in the works of Binding et al. (2008). TSM also showed inverse
relation with bands near 670 nm, signalling the presence of a phytoplankton
component.

Calibration–validation

Calibration–validation procedures were applied to the PCR models for chlorophyll-a
and TSM prediction. The full dataset was divided randomly into subsets of 60% for

Table 8. Stepwise regression analysis of PC scores against TSM (n ¼ 89).

Model

Regression
coefficients

t P

Collinearity
statistics

R2 (%)B Std. Error Tolerance VIF

1 (Const) 8.50 0.58 14.79 0.00 33.4
Factor 1 3.84 0.58 6.64 0.00 1.00 1.00

2 (Const) 8.50 0.45 19.04 0.00 60.2
Factor 1 3.84 0.45 8.54 0.00 1.00 1.00
Factor 2 73.44 0.46 77.66 0.00 1.00 1.00

3 (Const) 8.50 0.35 24.07 0.00 75.4
Factor 1 3.84 0.35 10.80 0.00 1.00 1.00
Factor 2 73.44 0.36 79.68 0.00 1.00 1.00
Factor 3 72.58 0.35 77.28 0.00 1.00 1.00

Note: The first three principal components explain about 75% of the TSM variation.

Figure 14. Regression analyses between predicted TSM levels and gravimetrically measured
TSM in the WBLE.
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model calibration and 30% for model validation purposes. Table 9 shows that the
validation parameters using 30% of the data (mean residuals (MRES), R2 and
RMSE) for both chlorophyll-a and TSM are only slightly worse than the calibration
statistical parameters. Parameters from validation datasets (28 dataset) were
expected to be worse than those attained from the calibration dataset (61 dataset)
because the validation data were not included in the development of the model. The
beta coefficients in the calibration and validation models are within the error margin
for the chlorophyll-a. The fact that all of the validation statistics have similar values
to that of calibration dataset demonstrated that the model is stable and it is not
affected by dataset size making the model more robust.

Conclusion

Multivariate decomposition of reflectance measured from filtered sample using a
laboratory-based spectrophotometer clearly indicated the presence of multiple
factors that affect the optical characteristics of the WBLE, namely, cyanobacteria,
diatoms and inorganic minerals. This approach effectively (a) reduces number of the
variables in multiple regression models, (b) removes scattering effect of variables and
(c) eliminates multicollinearity problems. The consistency and reproducibility of the
extracted Lake Erie water constituents from the PCA analysis, both in the case of the
joint spatiotemporal data and temporally specific data, indicates that the multi-
variate approach is stable method that may be applied efficiently in Case 2 waters.

Various models have previously been applied to explain the biogeophysical
characteristics of Case 2 waters from remote sensing data (Moore 1980, Gitelson
1992, Dekker 1993, Han et al. 1994, O’Reilly et al. 1998, Gower et al. 1999, 2005,
Håkansson 2000, Gons et al. 2002, Ruddick et al. 2003, Parinet et al. 2004, Simis
et al. 2005, Schalles 2006, Gitelson et al. 2008, 2009, Witter et al. 2009, Moses et al.
2009). The successes of bio-optical models have been commonly described using
simple statistical criteria such as the coefficient of determination and the root mean
square error of the predictions. A number of studies have defined the relationship of
reflectance with biogeophysical factors as univariate and others have adapted a
multivariate linear or nonlinear approach. Recent studies show that multivariate
models are capable of assessing large number of variables and interrelations and
therefore, more successful in defining and predicting complex biogeophysical
processes.

Table 9. Summary of the validation parameters computed using the calibration and
validation dataset for the PCs and two CPAs (chlorophyll a and TSM).

PCA

N MRES R2 RMSE Beta Values

Dataset – chlorophyll a
Training 6261 0.02 0.70 0.98 0.72
Validation 28 0.86 0.71 2.041 0.64

Data set – TSM
Training 6261 0.09 0.77 2.89 0.81
Validation 28 –0.39 0.69 4.17 0.63
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In this study, the relationships between the first derivative of hyper-spectral
bands with chlorophyll-a and TSM s have been investigated using a linear
multivariate approach. This model has been able to predict concentration of
chlorophyll-a and TSM in the Western Basin of Lake Erie with a maximum
predictive success of 70% and 75%, respectively, using approximately 88% of the
variation in the optical data. Calibration–validation procedures clearly demon-
strated that the PCA-based models are stable and the results are not affected by
dataset size.
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