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Lake Erie is part of the Great Lakes systems in North America, which represent the
largest continental lake systems in the world. Anthropogenic eutrophication in the
Western Basin of Lake Erie, a Case II environment, has an adverse impact on the
surrounding ecosystems and the regional economy. The optical complexity found in
Lake Erie is a feature of many aquatic environments making it a challenging setting for
remote-sensing applications. To assess the controls on these optical properties, we
sampled 20 locations, encompassing a variety of optical environments in the Western
Basin and Sandusky Bay during four research cruises. Strong correlations between
light extinction and phycocyanin (correlation coefficient, r ≥ 0.95), suspended sedi-
ment (r = 0.90), and chlorophyll-a (r ≥ 0.86) indicate that surface conditions are
representative down to at least the first optical depth. Application of varimax-rotated
principal component analysis to lab-based, hyperspectral reflectance data identified
three components related to a diatom/green algae community, and two blue-green algae
communities, one of which was associated with suspended sediment. Phycocyanin and
chlorophyll-a content inferred using a semi-analytic red/near-infrared algorithm corre-
lated well with concentrations measured in situ using a multiparameter sonde.
Chlorophyll-a retrievals from a regional, blue : green algorithm developed for the
Western Basin of Lake Erie compared well with retrievals from the semi-analytic
algorithm for all samples from the Western Basin and 25% of samples from
Sandusky Bay. Chlorophyll-a retrieval errors using the blue : green algorithm occurred
when high ratios of suspended sediment to phycocyanin biased samples from the
extremely turbid waters of Sandusky Bay. The bias likely resulted when suspended
sediment altered the blue : green ratio or when phycocyanin interfered with the
chlorophyll-a absorption peaks. This approach can be applied to other Case II envir-
onments to provide insights during the design of experimental field studies and for
spectral band selection with the next generation of visible near-infrared remote-sensing
instruments.

1. Introduction

Estimation of plant biomass in aquatic systems by retrieval of chlorophyll-a from remote-
sensing observations has become routine in Case I waters, where chlorophyll-a is the
dominant colour-producing agent (CPA) (McClain 2009). The situation is more complex
in Case II waters, where multiple CPAs may confound the reflectance signal (Morel and
Prieur 1977; Mobley et al. 2004). Bodies of water classified as Case II include coastal
waters with significant input of suspended sediment and terrestrial organic matter, and
shallow, highly stratified systems containing or dominated by blue-green algae or other
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algal taxa with accessory pigments that alter the ratio of water-leaving radiances to each
other, which vary versus wavelength. Many highly productive systems also have high
concentrations of chromophoric dissolved organic matter (CDOM), degradation products
of chlorophyll-a. In the Great Lakes Region, the Western Basin of Lake Erie is an
excellent site to study the dynamics of Case II waters due to the input of several CPAs
and the large range of observable conditions. Here, we seek to evaluate the relative
importance of particulate CPAs in the Western Basin of Lake Erie and Sandusky Bay.

The Western Basin (WB) of Lake Erie and its generally more turbid marginal basin,
Sandusky Bay (SB), exhibit these complicating factors. Productivity is among the highest
seen in freshwater ecosystems, the maximum depth of the WB is only 11 m, and rivers
draining eight major watersheds deliver a mix of sediment, CDOM, and riverine algae to
the region. In addition to historical issues with Lake Erie water quality, in recent years the
WB has experienced increasing blooms of Microcystis aeruginosa, a potentially toxic
blue-green alga (Ouellette, Handy, and Wilhelm 2006; Millie et al. 2009). Efficient
monitoring of water quality is essential because the lake serves as an economic and social
resource through the fishing and recreation industries and is integral to the regional
drinking water supply. While methods are being developed to monitor potentially harmful
algal blooms in marine and coastal environments (Roesler and Boss 2008), these
approaches are also necessary in aquatic environments.

While direct methods of monitoring water quality involve the analysis of water
samples, these methods cannot provide the spatial and temporal coverage needed to
continuously assess water quality on basin-wide scales. Use of satellite remote sensing
provides complementary information with the potential to greatly improve our under-
standing of water quality variations (Baban 1995; Gons 1999; Nellis, Harrington, and Wu
1998; Islam, Yamaguchi, and Ogawa 2001; DeCauwer et al. 2004; Ouillon, Douillet, and
Andrefouet 2004; Shuchman et al. 2006; Le et al. 2009; Park, Ruddick, and Lacroix 2010;
Tarrant and Neuer 2009; Tyler et al. 2006). Remote-sensing systems assess water quality
by applying algorithms that relate satellite-measured reflectance to the concentrations of
specific CPAs (see Martin 2004). Ground-truthing is often achieved by comparing co-
located satellite and in situ observations. Applying this technology to the WB of Lake Erie
has proved challenging due to the difficulty of separating the spectral signatures of the
multiple CPAs in the environment.

Recent work has demonstrated the difficulty of extracting valid chlorophyll-a infor-
mation from the WB. Witter et al. (2009) evaluated retrievals of chlorophyll-a concentra-
tions for Lake Erie employing 13 marine algorithms. They found that all of the ocean-
calibrated algorithms had major deficiencies, and that the deficiencies were particularly
large in the WB. Because the chlorophyll-a concentrations observed in situ in SB
exceeded the maximum values for which the ocean-derived algorithms were calibrated,
that region was excluded from their analysis. They also employed four regional algo-
rithms specifically calibrated for Lake Erie that provided adequate performance in the
Central and Eastern Basin, but which yielded relatively unsatisfactory results in the WB.
Given the small size of the data set employed, additional observations were deemed
necessary to fully validate the regional algorithms. Becker et al. (2009) employed a
forward modelling method using a linear, non-negative, least-squares, spectral mixing
model to infer phytoplankton abundance by class, and chlorophyll-a and phycocyanin
concentrations in Lake Erie from Moderate Resolution Imaging Spectroradiometer
(MODIS) observations. Their model produced results with generally good agreement
when compared to in situ measurements (coefficient of determination, R2 = 0.66 for
cyanobacterial abundance), but they noted that additional work was needed to quantify
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temporal variability in the characteristics of the CPAs. Wynne et al. (2010) monitored the
dynamics of a Microcystis bloom in Lake Erie employing a Medium Resolution Imaging
Spectrometer (MERIS)-based, spectral shape function (equivalent to a second derivative
transformation), calibrated using cell counts obtained from filtered samples. Their work
indicated that wind stress plays a major role in the distribution and intensity of algal
bloom in surface waters, and therefore, wind data should be considered when evaluating
the potential for prolonged bloom conditions.

Researchers working in other inland basins have had similar experiences. Randolph
et al. (2008) employed an Analytical Spectral Devices (ASD; Analytical Devices, Inc.,
Boulder, CO, USA) FieldSpec™ UV–VNIR spectroradiometer, similar to the instrument
used in this study, to estimate chlorophyll-a and phycocyanin in two reservoirs in Illinois
with Case II water. They were able to predict the concentration of phycocyanin well using
the algorithm of Simis, Peters, and Gons (2005), while chlorophyll-a prediction was less
reliable. Because of the complexity of Case II waters, approaches that employ semi-
analytical algorithms (Le et al. 2009) or spectral unmixing methods (Alcântara et al. 2009;
Moberg et al. 2002) seem more effective at isolating the sources of variance present.

Our work is motivated by these studies. To further improve remote-sensing algorithms
that will enable successful retrieval of chlorophyll-a, and potentially other CPAs in the
WB, we explore the spectral reflectance of suspended materials collected in the WB and
SB. Our approach is to use a laboratory-based, hyperspectral visible and near-infrared
(VNIR) spectrometer to characterize the CPAs extracted from the particulate load in the
water column. This enables us to capture the spectral signatures of particulate CPAs
present in the region without the complications of variations in illumination or atmo-
spheric interference, which interfere with remote-sensing observations.

We employ varimax-rotated principal component analysis (V-PCA), an inverse
method in which the structure of the data determines the results of the decomposition.
PCA has been successfully employed previously in ocean colour remote sensing for
atmospheric correction and to improve the quality of chlorophyll-a retrievals (Frouin
et al. 2005, 2006; Gross-Colzy et al. 2007; Steinmetz, Deschamps, and Ramon 2008).

2. Methods

2.1. Field methods

Using a research vessel from Stone Laboratories (R/V Gibraltar III or the R/V Erie
Monitor), we conducted four research cruises on 11 June 2007, 27 June 2007, 29 July
2007, and 14 August 2007, collecting samples and a suite of measurements from 20
locations around the WB and in SB (Figure 1). These dates were selected subject to ship
time availability and enabled us to sample a range of environmental conditions prior to and
following the development of thermal stratification, which is associated with the develop-
ment of cyanobacterial blooms in the warm summer months. Thin, high clouds and variable
atmospheric aerosol content precluded direct comparison with either MODIS or Landsat
overpasses, which coincided with the cruise dates. Completion of each cruise track, which
was designed to collect water samples from a variety of environments, required approxi-
mately 10 hours. Sample locations were stored as waypoints using the Wide Area
Augmentation System (WAAS)-enabled, Raymarine™ model C120/w (Raymarine, Inc.,
Nashua, NH, USA) on the R/V Gibraltar III or the Raymarine™ model C80 marine
navigation system on the R/V Erie Monitor with guaranteed accuracy of <5 m and typical
accuracy of <3 m to verify re-occupation of the same site during each cruise.

8856 J.D. Ortiz et al.
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At each station, we measured Secchi depth and collected one litre of surface water for
filtered reflectance measurement in the lab. Chlorophyll-a and phycocyanin concentra-
tions were measured fluorometrically throughout the water column at each station using a
depth-profiling, Hach Hydrolab DS5X multiparameter sonde (Hach Company, Loveland,
CO, USA) fitted with two Turner Designs fluorometers (Turner Designs, Inc., Sunnyvale,
CA, USA) that were factory calibrated prior to use. The instrument also measured depth,
temperature, specific conductivity, pH, dissolved oxygen, oxidative–reductive potential,
and turbidity in normalized turbidity units (NTUs). We compare the Hach Hydrolab
surface values for selected parameters with filtered reflectance measurements from surface
water collected at the same locations. The surface water was filtered onto a 47 mm glass-
fibre filter (GF/F) during the cruise for later hyperspectral, VNIR derivative spectroscopy
in the lab. All samples were wrapped in aluminium foil and stored on ice in the dark, until
further processing, which took place the day following the research cruise. We evaluate
the effectiveness of this method by correlating our lab results with field observations and
by comparison with published reflectance spectra from high-performance liquid chroma-
tography (HPLC)-extracted pigments (Toepel, Langner, and Wilhelm 2005). By filtering
the samples, we concentrate the particulates extracted from the water column. This
provides a sample analogous to a sediment sample, enabling us to apply methods that

Toussaint River

Portage River

Sandusky River

82° 00′ W 82° 50′ W
5 km

41°
30′ N

41°
40′ N

N
Middle

Bass Island

Western Basin

Sandusky Bay

Kelleys

Island

Figure 1. MERIS true colour image of the study area on 14 June 2007, indicating the positions of
the 20 stations occupied during each of the four research cruises. Landmarks identified on the image
include WB of Lake Erie, SB, and the major rivers (Sandusky, Toussaint, and Portage) feeding into
these two bodies of water.
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have been effectively used to study the optical properties of lake sediment (e.g. Wolfe
et al. 2006). This approach increases the signal to noise ratio but excludes CDOM from
our measurements, which may be an important CPA in some of our samples. We thus
provide insights into the particulate CPA signature in these water masses.

Secchi depths were measured on the shaded side of the vessel using a standard, 20 cm-
diameter limnological Secchi disk with alternating black and white quadrants. The Secchi
disk provides a measure that can be related to the light extinction coefficient (kT). kT itself
is a composite optical property, kT = (α + kd), where α is the collimated light attenuation
coefficient and kd is the diffuse attenuation coefficient (Graham 1966; Tyler 1968;
Lorenzen 1980; Armengol et al. 2003). This sum is also sometimes referred to as the
‘light attenuation coefficient’ (Kelble et al. 2005) and is proportional to the reciprocal of
Secchi depth (m−1) (Kelble et al. 2005). The Beers–Lambert law stipulates that kT is
proportional to increasing concentrations of CPAs, provided that the vertical light attenua-
tion rate is constant. For Case II waters, the relationship can be written as

kT ¼ kw þ αchlCchl þ αpcyCpcy þ αsedCsed; (1)

where kw is the diffuse attenuation due to pure water and kd, the diffuse attenuation
coefficient, has been partitioned into its constituent components, αxCx, which represent the
diffuse attenuation due to the concentrations of chlorophyll-a (αchlCchl), phycocyanin
(αpcyCpcy), and suspended sediment (αsedCsed), respectively. In Case I waters, this relation-
ship simplifies because the terms αpcyCpcy for phycocyanin and αsedCsed for suspended
sediment can be neglected.

2.2. Laboratory methods

In the lab, we determined the blank-corrected, dry particulate mass of each filter grav-
imetrically using an analytical balance with a precision of ±0.1 mg. The samples on the
GF/F were dried overnight in an oven at 60°C, similar to the methods of Dabakk et al.
(1999) and de Medeiros et al. (2005), who employed near-infrared (NIR) spectroscopy to
study filtered seston in aquatic systems. Two hundred VNIR spectra were measured and
averaged for each sample from the dried filters using an Analytical Spectral Devices
(ASD) Labspec Pro FR ultraviolet/visible/near-infrared (UV/Vis/NIR) spectrometer
equipped with a Labspec high-intensity contact probe. The system is capable of measuring
reflectance between 250 and 2500 nm, at 2 nm resolution in the visible spectrum and
10 nm resolution in the NIR, on a 20 mm spot size. The data were then band-averaged to
10 nm width, providing hyperspectral resolution (210 bands) with useful observations
between 400 and 2500 nm. The VNIR spectra were blank-corrected by dividing each
sample reflectance spectrum by a GF/F blank reflectance spectrum measured in the same
manner as the sample (e.g. Méléder et al. 2003; Combe et al. 2005). We report the results
as percentage reflectance, because this is the measurement generated by our instrument.
Recall that absorption, a = log10 (1/R), which can be approximated as a = 1/R when the
reflectance, R, is small. As such, a reflectance trough corresponds to an absorption peak.
In applications where absorption is needed, we thus take the inverse of our reflectance
measurements. The resulting percentage reflectance spectra were further transformed to
produce two separate products: estimates of the concentrations of various CPAs calculated
based on published remote-sensing algorithms and centre-weighted derivative spectra.
The visible component of the derivative spectra was decomposed by V-PCA. The centre-
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weighted first derivative of the reflectance spectra removes background scattering and
accentuates absorption features in the visible and NIR spectra.

To evaluate the impact of filter drying on chlorophyll-a degradation, we searched the
derivative of the measured reflectance spectra from our samples for features related to
chlorophyll-a and its principle degradation products: phaeophytin-a, phaeophorbid-a, and
chlorophyllide-a. We calculated derivative spectra from published HPLC-extracted reflec-
tance spectra (Toepel, Langner, and Wilhelm 2005) from known pigments for comparison
with our measurements. Our samples (see Figures 2 and 3) have peaks in their derivative
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Figure 2. (a) Reflectance spectra (400–2500 nm) for all samples collected during the four research
expeditions (grey curves). The blue curve is the average spectrum for the samples to the west of
South and Middle Bass islands (Stations 1–10), while the red curve is the average spectrum for the
samples east of South and Middle Bass islands (Stations 11–18) and the green curve is the average
spectrum for the Sandusky Bay samples (Stations 19 and 20) from all cruises combined. The
reflectance feature due to suspended sediment is denoted SS; (b) the centre-weighted first derivative
of the reflectance spectra in Figure 2(a).
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spectra at 450 nm and around 680–690 nm, similar to that observed for chlorophyll-a (450
and 670–680 nm). None of our samples exhibit derivative peaks at 420 nm, an indication
of the presence of phaeophytin-a or phaeophorbid-a (Toepel, Langner, and Wilhelm
2005). Chlorophyllide-a has reflectance spectra similar to chlorophyll-a with derivative
peaks at 440 and 680 nm. It can be differentiated from chlorophyll-a by its peak in the
derivative spectra at 440 nm. However, we do not observe a peak at 440 nm in our
samples, suggesting that either chlorophyllide-a is absent or its concentration is below a
detectable level.
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Figure 3. (a) The visible part of the reflectance spectra from Figure 4 identifying features
associated with chlorophyll-a (chl-a) and phycocyanin (PC); (b) the centre-weighted first derivative
of the visible part of the spectra. The grey, blue, red, and green curves are as defined in Figure 2.
The suspended sediment feature in the visible spectrum can be identified as goethite based on its
band position.
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2.3. Quantification of CPAs

The complexity of Case II waters as described by Equation (1) requires that we monitor
several classes of CPA to characterize the optical properties of the water. The bands of
greatest interest include R490, the reflectance at 490 nm, to monitor chlorophyll-a using
the blue-green absorption region, R630, the reflectance at 630 nm, to monitor phycocyanin,
and R680, the reflectance at 680 nm, to monitor chlorophyll-a in the red absorption region
for chlorophyll-a (e.g. Simis, Peters, and Gons 2005; Witter et al. 2009; Yew-Hoong Gin
et al. 2002; Wass et al. 1997; Alcântara et al. 2009).

We estimate variations in the relative concentration of various CPA by applying
remote-sensing algorithms from the literature to our filtered, blank-corrected reflectance
spectra. Although the results obtained from our filtered samples using these algorithms
will likely be systematically offset from results using satellite data, we are most interested
in the relative differences we observe between samples, rather than their absolute values.
Our earlier work, Witter et al. (2009), provides motivation to focus on two classes of
algorithms to estimate chlorophyll-a. We compare results depending on blue : green ratios
and red : NIR ratios to evaluate the relative effectiveness of these band combinations for
chlorophyll-a retrieval in the Case II waters of Lake Erie (e.g. Gitelson, Keydan, and
Shiskin 1985; Gitelson 1992; Gitelson et al. 2008; Amin, Gilerson, et al. 2009; Amin,
Zhou, et al. 2009; Gilerson et al. 2009). The results of this work should help to guide the
selection of bands and band ratios on which to focus for the development of new remote-
sensing algorithms and instrumentation to best retrieve pigment information for various
classes of algae from remote-sensing data. Simis, Peters, and Gons (2005) provide semi-
analytic algorithms to measure chlorophyll-a and phycocyanin corrected for biogenic
backscatter (Gons 1999), water absorption (Buiteveld, Hakvoort, and Donze 1994), and
the interference of the two pigments with each other. These algorithms are appropriate for
our application because they were devised for use in shallow lakes dominated by blue-
green algae. We also compared our results with a regional chlorophyll-a algorithm from
Witter et al. (2009), which was derived based on co-located satellite observations and
field-collected samples from the WB of Lake Erie. This algorithm is based on a compar-
ison of remote-sensing reflectance for bands in the blue (490 nm) and green (555 nm)
parts of the spectrum. In the Central and Eastern Basins, a similar regional algorithm, also
calibrated with chlorophyll-a samples from Lake Erie, provides more effective chloro-
phyll-a retrievals than ocean-derived algorithms. Because the WB regional algorithm
performed poorly in comparison with the Central and Eastern Basin regional algorithms
from Witter et al. (2009), comparison of the WB regional algorithm with in-water data
should help to diagnose the reasons for the algorithm’s limitations.

To estimate suspended sediment (SS) concentration in our samples, we rely on a
specific NIR band, 1910 nm, which should not be contaminated by the pigment signals in
the visible. This measure of suspended sediment is based on the absolute value of the first
derivative of the reflectance spectra, ∂R/∂λ, where λ is wavelength:

ss ¼ @R

@λ

�
�
�
�

�
�
�
�
1910

: (2)

In the derivative of the reflectance spectra evaluated at 1910 nm, there is a prominent
hydroxyl trough in siliciclastic minerals such as smectite or illite, two common clay
minerals found in mid-latitude sediment (Clark et al. 2003; Viscara Rossel, McGlynn,
and McBratney 2006; Jarrard and Vanden Berg 2006; Will 2006). Additional troughs at
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greater wavelength in the NIR relate to carbonates present in our samples, as is expected
given the regional bedrock geology. These troughs produce signals similar to the reflec-
tance derivative feature at 1910 nm but yield a weaker signal. Because the reflectance
derivative feature at 1910 nm is a trough in all samples, it generates a negative derivative
in reflectance data. Calculating the absolute value provides a measure that increases
linearly as suspended sediment concentration increases.

2.4. Principal component analysis of reflectance spectra

To complement the tests that we conducted with the remote-sensing algorithms, we also
decomposed the blank-corrected, derivative-transformed, reflectance spectra to extract
independent reflectance components, which can be compared to different classes of
CPAs either independently or by calculating a contrast by subtracting one component
from another. V-PCA (Kaiser 1958; Kachigan 1991; Smith 2002; Schlens 2005; Broersen,
van Liere, and Heeren 2005) on the centre-weighted derivative of the reflectance spectra
provides a powerful, multivariate approach to extract information regarding clay minerals,
iron oxides/oxhydroxides, and plant pigments from visible spectra (Ortiz, O’Connell, and
Mix 1999; Moberg et al. 2002; Ortiz et al. 2004, 2009). The strength of this inverse
modelling method arises from its ability to determine linear combinations of the input
variables that are orthogonal or independent, thus addressing the problem of correlated
variance (multicollinearlity) inherent in most multivariate data sets, and effectively sol-
ving the potential problem of over-fitting to which forward, least-squares models are
prone.

We conducted V-PCA on the correlation matrix obtained from a data matrix in which
each column represents a 10 nm wavelength band of the derivative-transformed visible
spectra, and each row represents a station in one of the cruise tracks. All four cruises were
combined into a single matrix to allow evaluation of the joint variation in space and time
within the data set. Use of the correlation matrix weights each band equally within the
analysis because the correlation coefficient is the cross product of the z-scores of the two
bands. We focused on the visible part of the spectrum because this is where the highest
inter-correlations between bands are observed, facilitating extraction of V-PCA
components.

Previous work has demonstrated the utility of this method for extracting information
regarding variations in sediment composition (e.g. carbonates, clays, iron oxides, and
oxyhydroxides) both spatially and temporally in bedrock, sediment, and suspended sedi-
ment aqueous mixtures (Balsam and Deaton 1991; Deaton and Balsam 1991; Mix, Harris,
and Janecek 1995; Mix et al. 1999; Harris and Mix 1999; Lahet, Ouillon, and Forget
2000; Ouillon et al. 1997; Woźniak and Stramski 2004). The method works equally well
with CPAs, allowing us to isolate spectral patterns that are correlated in space and time. To
confirm that the results were not biased by outlier samples, we also performed versions of
the V-PCA analysis on samples from the WB and SB separately.

3. Results

3.1. CPAs inferred from filtered water samples

The reflectance spectra for the 80 filtered, dried samples clearly showed evidence of
multiple CPAs (Figure 2). The reflectance troughs at 450 and 680 nm correspond to
chlorophyll-a absorption peaks, exhibiting values as low as 10%. For many samples,
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particularly those in and near SB, a local minimum in absorption in the visible was
observed between 560 and 580 nm, and phycocyanin absorption was observed between
620 and 630 nm with similarly low values (Figure 3). The minimum chlorophyll-a and
phycocyanin absorption was observed at Stations 8 or 9 depending on the cruise. These
two stations are located in relatively deep and open water, 4–10 km from land and 15–
20 km from the nearest major river outflow. Based on visual inspection of Landsat images
from previous years and MODIS/MERIS images from 2007 acquired within a 3 day
window of our cruises, these sites are rarely influenced by riverine plumes. Analysis of
additional MODIS/MERIS images from 2009 and 2010 is consistent with this observa-
tion. In Figure 2, the gradual increase in reflectance in the NIR is consistent with
increasing suspended sediment concentration towards SB. Absorption in the NIR at
1400 nm, and 1910 nm and beyond, with values in the range of 60–70% for samples
from SB, indicates the presence of suspended sediment (Clark et al. 2003; Viscara Rossel,
McGlynn, and McBratney 2006).

3.2. Spatial relationships of in-water properties and CPAs along cruise tracks

Analysis of National Oceanic and Atmospheric Administration (NOAA) meteorological
data from the South Bass Island Station, United States Geological Survey (USGS) stream
flow data from the Maumee, Sandusky, and Portage Rivers, and hydrolab data collected
during each cruise provide information on the environmental changes during the expedi-
tions (Table 1, Figure 4). Atmospheric conditions during the cruises were similar: overcast
skies with no rain and atmospheric pressure of 1017–1020 hPa and daily average south-
erly winds of 1.6 to 5 m s−1, with the exception of the 29 June 2007 cruise when there was
minor rainfall, and the 29 July 2007 cruise, during which the atmospheric pressure was
1014 hPa and the winds of 3.1 m s−1 were from the northeast. Air temperatures ranged
from 20.7°C to 25.3°C. The warmest surface air temperatures occurred during the second
cruise. Discharge from the Maumee, which was uncorrelated with that from the other
rivers ranged from 11.33 to 30.6 m3 s−1 during the span of the four cruises, while the
discharge from the Sandusky (0.5 to 1.4 m3 s−1) and Portage Rivers (0.6 to 5.9 m3 s−1)
was considerably lower, but inter-correlated. The average daily value for each variable fell
within two standard deviations of its respective grand mean over the span of the four
cruises.

The hydrolab data indicated that the surface temperatures – and stratification –
increased during the course of the four cruises (Figure 5). On 11 June 2007, the surface
temperature increased from 20.7°C at Station 1 to 24.8°C at Stations 19 and 20 (Figure 5).
By the second cruise on 27 June 2007, the surface temperature at Station 1 had increased
to 24.0°C while that at Station 20 had increased to 26.2°C. Temperatures at each station
were similar or slightly cooler during the 29 July 2007 cruise relative to the 27 June 2007
cruise. By the fourth cruise, however, surface temperatures had increased considerably
across the entire transect, with values of 25.8°C at Station 1, increasing only to 26.2°C at
Station 20. Specific conductivity increased from Station 1 towards Station 20 in Sandusky
Bay, but we observed no change in the average specific conductivity between cruises
(Figure 5(b)).

The light extinction in the water column inferred from kT generally increased from
Station 1 (~0.5 m−1) to Station 4 or 5 (~1.0 m−1) depending on date (Figure 6(a)). Visual
inspection of satellite imagery suggests that this trend coincides with the increasing
influence of plumes associated with the Portage and Toussaint Rivers in the vicinity of
these stations (see Figure 1). Light extinction generally decreased from Stations 4 to 10,
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reaching a minimum of ~0.25 m−1 between Stations 8 and 10, depending on the date of
the cruise. The greatest increase in kT was observed from Station 11 to Station 20,
transiting from the Lake Erie Islands into SB. During all cruises, the stations in SB
exhibited the highest values of kT,. The maximum value of kT observed at Station 20
ranged from 2 to 3.25 m−1 and increased from the first to the fourth cruise. The
concentration of filtered, dried, total suspended particulates (TSP) generally follows the
trends in kT (Figure 6(a)) with minimal values that were essentially zero to values as high
as 40 mg l−1 at Station 20. Plant pigment and suspended sediment produce spatial and
temporal patterns that are generally consistent with the kT and TSP data obtained from the
matching cruise track (Figure 6). Comparisons of pigment retrievals from the
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remote-sensing algorithms of Simis, Peters, and Gons (2005) and the regional WB
algorithm of Witter et al. (2009) show similar trends in the WB, with values generally
below 2 μg l−1. In SB, a region for which the Witter et al. (2009) algorithm employed did
not include calibration data, it produced much higher mean chlorophyll-a values (10–18
μg l−1) than the Simis, Peters, and Gons (2005) algorithm (3–4 μg l−1), which is optimized
for use in hyper-eutrophic environments. The trends in the relative measure of suspended
sediment were similar to those displayed by the Witter et al. (2009) algorithm.

3.3. Relationships between multiple measures of CPAs

When considered for all 20 stations, most of the CPAs studied were highly correlated
(correlation coefficient, r ≥ 0.86) with kT (Table 2), indicating that multiple CPAs control
the optical environment of the region as a whole. The majority of correlation values were
statistically significant (Table 2). Inspection of correlations calculated separately for the
WB stations (1–18) and the SB stations (19–20) reveals that the optical regime differs
between these two areas. In the WB, with the exception of the Hydrolab chlorophyll-a
estimate, correlations between kT and phycocyanin, chlorophyll-a, and suspended sedi-
ment were very strong (r ≥ 0.80), indicating that variations in these CPAs control regional
variations in absorption. Hydrolab phycocyanin estimates are well correlated with kT in
both the WB and SB. Although suspended sediment attains its highest values in SB
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(Figure 6(b)), variations in this variable do not correlate significantly with variations in kT
within SB, where there are much stronger relationships between kT and phycocyanin.

3.4. Principal component analysis of derivative-transformed reflectance spectra

The V-PCA model based on the entire data set extracted three significant varimax-rotated
components, which account for 39.9%, 30.0%, and 22.3% of the variance for a combined
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total variance explained of 92.2%. The average communality for the 30 bands was 0.92
out of 1.0, and so these three components contributed to the vast majority of spectral
variability at each station. Comparison of the component loadings as a function of
wavelength with derivative-transformed standard reflectance spectra for pigments from
known classes of algae extracted by HPLC and sediment minerals indicates that the first
component is inversely correlated with prokaryotic blue-green algae (Figure 7(a)). We
plot this component on an inverted axis so that its sense of increase matches that of the
other components. The second component relates to eukaryotic diatoms and/or green
algae (Figure 7(b)). The third component represents a more complex mixture, blue-green
algae, and the iron oxyhydroxide, goethite (Figure 7(c)). The reference spectrum in
Figure 7(c) was obtained from a least-squares fit of the component-3 loadings to a linear
mixture of blue-green algae and goethite derivative spectra.

Comparison of the component scores at each site allows us to evaluate the relative
importance of each component along each cruise track (Figure 8(a)). For three of the four
cruises, the first component has its strongest component scores in SB (−1.5 standardized
units), suggesting that lacustrine blue-green algae concentrations were greatest in SB. In
the WB, Component 1 scores were highest for cruise 2 (−0.5 to −1.0 standardized units),
when daily-averaged air temperatures were 2°C to 4°C warmer than during any of the
other cruises as measured at the National Oceanic and Atmospheric Administration’s
South Bass Island Station located near our Station 1. The warm temperatures on the day of
cruise 2 and on the days immediately preceding this cruise may have generated conditions
conducive to blue-green algae growth in the WB (Millie et al. 2009). Surface water
temperatures at our stations during the second cruise also increased by up to 3°C from our
first cruise, an indication of greater stratification of the lake during the summer.
Component 2 scores, indicative of the diatom/green algae community, are generally
lower in SB (−1 to −2 standardized units) than in the WB (1−2 standardized units),
suggesting that this assemblage is more important in the WB than in SB. Component 3
decreases in importance with time in SB, from 4 to −1 standardized units, perhaps due to
increasing stratification and/or decreasing nutrient availability.

Table 2. Values of Pearson correlation coefficient (r*) for the correlation between total attenuation
coefficient (kT) and CPA measures.

WB and SB WB SB
Stations 1−20 Stations 1−18 Stations 19−20

Variable (CPA measure) (n = 80) (n = 72) (n = 8)

Phycocyanin (red : NIR)
(Simis, Peters, and Gons 2005, their Equation (5)) 0.95 0.84 0.73
Phycocyanin (Red : Red)
(Hach Hydrolab) 0.91 0.87 0.97
Chlorophyll-a (red : NIR)
(Simis, Peters, and Gons 2005, their Equation (3)) 0.95 0.81 0.62†

Chlorophyll-a (blue : Red)
(Hach Hydrolab) 0.59 0.57 0.90
Chlorophyll-a (blue : Green)
(Witter et al. 2009) 0.86 0.85 –0.46†

Suspended Sediment
(This study, Equation (2)) 0.90 0.80 0.12†

Notes: *All correlations significant at p < 0.01 level unless otherwise marked. †Correlation not different from
zero at the p = 0.05 level.
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The results from the component analysis are consistent with the variance in the
Hydrolab chlorophyll-a and phycocyanin estimates. In SB, the correlations of kT versus
chlorophyll-a and suspended sediment based on several remote-sensing algorithms are
generally lower than in the WB or the combined data set (Table 2), suggesting regional
shifts in the relative proportions of plant pigments present in the SB and thus a regional
change in the phytoplankton community structure within the SB relative to the WB. We
can quantify this change in phytoplankton community structure by calculating the contrast
between two components. This is done by subtracting the component scores of the second
component from those of the first (i.e. Component 1−2 contrast = Component 1 minus
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Component 2). This demonstrates a change in sign of the phycocyanin to chlorophyll-a
(chl-a) ratio relative to the Component 1−2 contrast between samples from the WB and
SB (Figure 8) The Component 1−2 contrast is positively correlated with the phycocyanin
(PC)–chl-a ratio in the WB, but inversely correlated in SB.

To confirm that outliers from SB did not control our results, we re-computed the
component analysis for data from WB only and SB only. The primary differences when
SB was excluded were that the importance of Components 1 and 2 switched and the
amplitude of the goethite peaks in Component 3 (at around 450 and 550 nm) either
decreased or separated from the blue-green algae component of Component 3 as a fourth,
distinct component. This confirms our interpretation of Component 3 in the V-PCA based
on the entire data set as a different community of blue-green algae associated with
suspended sediment in the SB. The prominent role played by suspended sediment – as
represented by the iron oxyhydroxide goethite in this component – suggests that these
blue-green algae may be of riverine origin or could be stimulated by mixing events, which
stir sediment and iron oxyhydroxides from the bottom of the lake to its surface. These
results also indicate that samples 16–18 represent intermediate mixtures of WB and SB
assemblages as can be inferred from their geographic position.

4. Discussion

4.1. Impact of multiple CPAs on optical properties of Case II water in WB and SB

The strength of our approach arises from the use of multivariate statistical methods to
partition the signatures of multiple CPAs through analysis of whole waveforms extracted
numerically from the visible part of the reflectance derivative spectra. Prior studies have
demonstrated the effectiveness of this type of approach using lab- and/or field-based
hyperspectral derivative spectroscopy to study complex aquatic environments
(Demetriades-Shah, Stevens, and Clark 1990; Han and Rundquist 1997; Méléder et al.
2003; Becker, Lusch, and Qi 2005; Combe et al. 2005; Barille et al. 2007; Murphy et al.
2008). Analysis of our data indicates that diffuse attenuation due to plant pigments and
suspended sediment increases from the WB into SB, although the variability of this trend
changes according to the component (Figure 8). We observed strong linear correlations
between the CPAs and kT at our sites (Table 2), demonstrating that surface conditions are
representative of diffuse attenuation down to at least the first optical depth, from which
the majority of the satellite response is received.

Chlorophyll-a estimates from the Witter et al. (2009) and Simis, Peters, and Gons
(2005) algorithms matched well for samples from Stations 1–18 during all cruises and for
samples from Stations 19–20 in SB collected during cruise 4 (Figure 9, Table 3), despite
the fact that these algorithms are based on different bands and have different functional
forms. However, estimates from the two algorithms diverged in SB for samples from
Stations 19–20 collected during the first three cruises. For these samples, estimates from
the Witter et al. (2009) algorithm were biased high (up to 8.9 μg l−1) relative to results
from the Simis, Peters, and Gons (2005) algorithm (Figure 9, Table 3). These biased
samples correspond to samples with high concentrations of phycocyanin and suspended
sediment.

Our sample distribution allows us to evaluate how the interaction of phycocyanin and
suspended sediment influences the observed chlorophyll-a bias between the algorithms
we studied. The phycocyanin estimates from the Hach Hydrolab sonde are reasonably
well correlated with the phycocyanin estimates from the Simis, Peters, and Gons (2005)

International Journal of Remote Sensing 8871

D
ow

nl
oa

de
d 

by
 [

K
SU

 K
en

t S
ta

te
 U

ni
ve

rs
ity

] 
at

 0
7:

42
 2

9 
O

ct
ob

er
 2

01
3 



phycocyanin algorithm (Table 4). The Hach Hydrolab sonde observations for chlorophyll-
a are also more strongly correlated with the Simis, Peters, and Gons (2005) than the
Witter et al. (2009) chlorophyll-a retrievals in SB (Table 4). In remote-sensing applica-
tions in water, ‘suspended sediment spectra’ are often presented which exhibit maximum
reflectance near 500−650 nm and greater absorption towards the blue and red ends of the
spectrum (Wass et al. 1997; Alcântara et al. 2009). These features are not replicated in
spectrophotometric observations of dried, filtered sediment (Clark et al. 2003; Montero
Sanchez et al. 2001; Jarrard and Vanden Berg 2006), and thus this spectral shape likely
results from the interaction of suspended sediment with the absorption of water and other
CPAs in the water column (Bukata, Bruton, and Jerome 1983). Likewise, because the
contribution of chlorophyll-a to R550 is minimal, this band is sometimes used to gauge the
suspended sediment contribution in remote-sensing applications (Wass et al. 1997).
However, in the WB samples from our data set, R550 is highly correlated with visible
bands out to 700 nm, but uncorrelated with NIR bands with known sediment absorption
features. While the chlorophyll-a contribution at 550 nm is minimal, phycocyanin exhibits
its maximal absorption at 620−630 nm with a broad peak that extends down towards
550 nm at the blue-green end of the spectrum and towards 700 nm at the red end of the
spectrum (Robertson, Lawton, and Cornish 1999). Peng et al. (2007) observed a strong
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Figure 9. Comparison of the semi-analytic algorithm of Simis, Peters, and Gons (2005) with the
Lake Erie regional algorithm of Witter et al. (2009) demonstrates that the two methods agree for
samples from the WB, but diverge for most samples from SB.

Table 3. Statistical comparison of chlorophyll-a errors for the algorithm of Witter et al. (2009).

Proxy Bias (µg l−1) RMSE (µg l−1)

Stations 1−18, Cruises 1−3 0.2 0.4
Station 19−20, Cruise 4 1.6 1.0
Stations 19−20, Cruises 1−3 8.9 2.0

Notes: Blue : green algorithm relative to the Simis, Peters, and Gons (2005) red : NIR algorithm. RMSE is the
root mean square error.
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linear relationship between particulate backscatter measured at 555 or 650 nm, denoted bp
(555) and bp (650), respectively, for samples from a variety of aquatic environments in
New York State. This is because variations in algal cell density result in scattering that
influences reflectance in the range 550 to 700 nm (Schalles 2006). Beyond 700 nm,
scattering effects in the NIR region are controlled by suspended sediment. As a final
point, carotenoid pigment also contaminates R550 by eroding the left shoulder of the R550

peak (Schalles and Yacobi 2000). Due to these pigment- and cell-scattering influences,
R550 cannot be used effectively as a measure of suspended sediment in the Case II waters
of Lake Erie, and potentially in other Case II waters.

4.2. Potential mechanisms of pigment bias in Case II water of Lake Erie

To compare the properties that potentially influence the chlorophyll-a bias, we calculated
the ratio of SS as described above to PC as measured by the Simis, Peters, and Gons
(2005) phycocyanin algorithm (Figure 10). This ratio, which we denote SS/PC, indicates
that the SB samples with the highest chlorophyll-a bias (values greater than 5 μg l−1) also
have high amounts of suspended sediment relative to the amount of phycocyanin (ratios
greater than 1.25). The absorption response of suspended sediment results in bias for
remote-sensing algorithms that compare band ratios across the visible spectrum. Samples
from SB had higher levels of suspended sediment than samples from the WB (Figure 6(b))
contributing to the outliers identified in Figure 10. The most likely cause for the bias in
chlorophyll-a estimation in these samples appears related to suspended sediment. Samples
with SS/PC >1.25 resulted in biased chlorophyll-a retrievals using the blue : green band
ratio algorithm (Figure 10). Samples with intermediate and low values of SS/PC (<1.25)
resulted in relatively unbiased chlorophyll-a estimates when using the same algorithm. A
plausible mechanism to explain the bias in the Witter et al. (2009) algorithm is that similar
to other blue : green ratio algorithms, it is sensitive to the impact of suspended sediment as
well as pigments on the green portion of the spectrum near 550 nm. In our particular
environment, the presence of goethite, an iron oxyhydroxide in the suspended sediment,
may also have posed a serious problem. The derivative spectrum from goethite exhibits
the greatest rate of change at 545 nm, close to the 550 nm normalizing band employed in
the Witter et al. (2009) algorithm. The Simis, Peters, and Gons (2005) semi-analytic

Table 4. Values of Pearson correlation coefficient (r*) for the correlation between Hach Hydrolab
sonde and remote-sensing algorithm estimates.

Proxy
WB and SB Stations

1−20 (n = 80)
WB Stations
1−18 (n = 72)

Witter et al. (2009) 0.39 0.63
Blue-Green chlorophyll-a algorithm
versus Hydrolab chlorophyll-a

Simis, Peters, and Gons (2005) 0.60 0.71
Red : NIR chlorophyll-a algorithm
versus Hydrolab chlorophyll-a

Simis, Peters, and Gons (2005) 0.88 0.85
Red : NIR phycocyanin algorithm
versus Hydrolab phycocyanin

Note: *All correlations significant at p < 0.01 level.
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algorithm does not have this issue because it is a red : NIR ratio algorithm and thus avoids
this potential source of bias.

For cases with low to intermediate suspended sediment concentrations (i.e. the WB
and SB cruise 4 data), the chlorophyll-a bias increases with increasing phycocyanin
concentration. Of these two effects on the chlorophyll-a bias, suspended sediment versus
phycocyanin, the effect of suspended sediment appears to create the greatest problem for
chlorophyll-a retrievals in these samples. In Lake Erie, it is important to note that the
conditions that generate this suite of correlated errors are most common in the WB and
SB, although events such as high fluvial discharge and sediment re-suspension could
produce these conditions in other areas of the lake. As noted by Witter et al. (2009), the
regionally tuned, blue : green algorithms performed much better in the Central and
Eastern Basins of Lake Erie in deeper water and away from major fluvial input.

The interaction of chlorophyll-a and phycocyanin on the remote-sensing algorithms
results in a more subtle form of bias. In cases where there is light to moderate loading of
suspended sediment, or in blue-green algal blooms, the concentration of phycocyanin
becomes a factor that affects the quality of the chlorophyll-a retrievals with algorithms
that use blue : green ratios. To demonstrate this, we calculated weighted average reflec-
tance spectra by numerically mixing a pure chlorophyll-a and a pure phycocyanin end
member in different proportions (Figure 11). This simple model demonstrates the impact
of phycocyanin reflectance on chlorophyll-a reflectance and vice versa. Chlorophyll-a and
phycocyanin peak in different parts of the electromagnetic spectrum. Indeed, accessory
pigments such as phycocyanin evolved to capitalize on this difference (Sze 1986). There
is, however, overlap between the responses of these two pigments (Figure 11(a)), which
biases remote-sensing chlorophyll-a algorithms based on blue–green bands in two impor-
tant ways. Because phycocyanin is highly reflective towards the blue end of the spectrum,
it increasingly masks the chlorophyll-a absorption peak at 440 nm as its relative
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Figure 10. Relationship between the ratio of suspended sediment to phycocyanin (SS/PC) and the
chlorophyll-a residual (μg l−1) estimated as the difference between the Witter et al. (2009) algorithm
and the best-fit line between the two algorithms − Witter et al. (2009) and Simis, Peters, and Gons
(2005) − for samples from Sandusky Bay.
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abundance increases. This effect can be seen most clearly in the derivative spectra (Figure
11(b)). Note that the chlorophyll-a peak near 450 nm is muted in the mixtures of
chlorophyll-a and phycocyanin due to masking from phycocyanin. The resulting deriva-
tive is asymmetric with a small peak at the blue end of the spectrum and a large peak at
the red end of the spectrum. This pattern is evident in the derivative spectra for our filtered
samples (Figure 3(b)). In the broad region where phycocyanin absorbs in the yellow-green
portion of the spectrum around 620−630 nm, it interferes with the chlorophyll-a absorp-
tion peak at 680 nm, diminishing and shifting the position of the chlorophyll-a absorption
peak towards longer wavelengths as the relative proportion of phycocyanin increases
(Figure 11).

The Simis, Peters, and Gons (2005) algorithm corrects for biogenic backscatter and
the interaction of phycocyanin with the chlorophyll-a absorption peak. Our results
indicate that the algorithm of Simis, Peters, and Gons (2005) provided a better measure
of chlorophyll-a in the most severely Case II waters that we studied, those with a high
ratio of suspended sediment to phycocyanin. It is also worth noting that the Simis, Peters,
and Gons (2005) algorithm was derived for cases where cyanobacteria were dominant,
similar to the situation sometimes observed in the WB and SB. The satisfactory compar-
ison of the Simis, Peters, and Gons (2005) and Witter et al. (2009) algorithms for low
values of chlorophyll-a and low ratios of suspended sediment to phycocyanin suggests
that the Simis semi-analytical approach may be more broadly applicable than was
originally reported in Simis, Peters, and Gons (2005); however, this result should be
verified with additional studies employing both remote sensing and field samples.
Additional work with algorithms of this type or employing red : NIR ratios in Case II
waters is warranted. The addition of correction factors for suspended sediment would
likely be a fruitful direction for future algorithm development. This could be accom-
plished by ensuring that appropriate NIR bands are available on satellites or spectrometric
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sensors used for chlorophyll-a estimation, because these bands are an important compo-
nent of red : NIR-based empirical and semi-analytic algorithms.

5. Conclusions

The use of a lab-based, hyperspectral VNIR spectrometer with 210 bands enabled us to
study the complete spectral response of the particulate load in the WB of Lake Erie and
SB from 400 to 2500 nm. Our results enable us to quantify relative changes in phyco-
cyanin and suspended sediment, which complicate the prediction of chlorophyll-a con-
centration in the WB and SB. The reflectance spectra can be decomposed by V-PCA into
three pigment assemblages derived from the following: lake-dwelling blue-green algae in
which chlorophyll-a and phycocyanin are both important CPAs; lake-dwelling diatoms
and/or green algae in which chlorophyll-a is the dominant CPA; and a blue-green algal
assemblage associated with goethite, a dissolved iron oxyhydroxide, in which chloro-
phyll-a and phycocyanin are also important CPAs. The spectral responses of these
communities differ such that changes in their relative abundance alters the water-leaving
radiance and complicates the retrieval of chlorophyll-a. In addition to complications
arising from potential shifts in community structure, the reflectance spectra demonstrate
significant influence due to the introduction of suspended sediment.

Despite these complications, our results indicate several points that are promising for
the retrieval of plant pigment information from the WB of Lake Erie. Measures of CPAs
collected from the surface of the water column were highly correlated with field-based
estimates of kT and published algorithms designed to correct for the bias of phycocyanin
on chlorophyll-a performed well in both the WB and SB. Our approach should be
applicable to other aquatic systems to differentiate the relative importance of various
CPAs in Case II waters.

These results also indicate that the next generation of algorithms and instruments
should monitor chlorophyll-a, and phycocyanin, and correct for the interference of
phycocyanin on chlorophyll-a retrieval. The inclusion of NIR bands on future remote-
sensing instruments to monitor suspended sediment is desirable since reliance on the
550 nm band for this purpose can be complicated by interference from phycocyanin and
other biogenic factors.
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