Business Statistics: A Decision-Making Approach
 $6^{\text {th }}$ Edition

Chapter 7
 Estimating Population Values

Confidence Intervals

Content of this chapter

- Confidence Intervals for the Population Mean, μ
- when Population Standard Deviation σ is Known
- when Population Standard Deviation σ is Unknown
Determining the Required Sample Size

Confidence Interval Estimation for μ

- Suppose you are interested in estimating the average amount of money a Kent State Student (population) carries. How would you find out?

Point and Interval Estimates

- A point estimate is a single number,
- a confidence interval provides additional information about variability

Estimation Methods

- Point Estimation
- Provides single value
- Based on observations from 1 sample
- Gives no information on how close value is to the population parameter
- Interval Estimation
- Provides range of values
- Based on observations from 1 sample
- Gives information about closeness to unknown population parameter
- Stated in terms of "level of confidence."
- To determine exactly requires what information?

Estimation Process

General Formula

- The general formula for all confidence intervals is:

Point Estimate \pm (Critical Value)(Standard Error)

Confidence Intervals

(1- α) $\times 100 \%$ Confidence Interval for μ

CI Derivation Continued

1. Parameter $=$ Statistic \pm Error (Half Width)

$$
\begin{aligned}
& \mu=\bar{X} \pm H \\
& H=\bar{X}-\mu \text { or } \bar{X}+\mu \\
& Z=\frac{\bar{X}-\mu}{\sigma_{\bar{X}}}=\frac{\bar{X}-\mu}{\sigma / \sqrt{n}}=\frac{H}{\sigma / \sqrt{n}} \\
& H=Z \times \sigma / \sqrt{n} \\
& \mu=\bar{X} \pm Z \times \sigma / \sqrt{n}
\end{aligned}
$$

Confidence Interval for μ (σ Known)

- Assumptions

- Population standard deviation σ is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate

$$
\overline{\mathrm{x}} \pm \mathrm{Z}_{(.5-\alpha / 2)} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

$(1-\alpha) \mathrm{x} 100 \% \mathrm{CI}$						

Interpretation

Sampling Distribution of the Mean

Factors Affecting Half Width

$$
H=z_{(.5-\alpha / 2)} \frac{\sigma}{\sqrt{\mathrm{n}}}
$$

- Data variation, σ :
H
as $\sigma \rrbracket$
- Sample size, n :
H
as n 亿
- Level of confidence, 1- α :
H if $1-\alpha$,

Example

- A sample of 11 circuits from a large normal population has a mean resistance of 2.20 ohms. We know from past testing that the population standard deviation is .35 ohms.
- Determine a 95\% confidence interval for the true mean resistance of the population.

Confidence Intervals

Confidence Interval for μ (σ Unknown)

- If the population standard deviation σ is unknown, we can substitute the sample standard deviation, s
- This introduces extra uncertainty, since s is variable from sample to sample
- So we use the t distribution instead of the standard normal distribution

Confidence Interval for μ (σ Unknown)

Assumptions

- Population standard deviation is unknown
- Population is normally distributed
- If population is not normal, use large sample
- Use Student's t Distribution
- Confidence Interval Estimate

$$
\bar{X} \pm t_{(1-\alpha / 2)}^{(n-1)} \frac{s}{\sqrt{n}}
$$

Student's t Distribution

- The t is a family of distributions

- The t value depends on degrees of freedom (d.f.)
- Number of observations that are free to vary after sample mean has been calculated

$$
\text { d.f. }=n-1
$$

Student's t Distribution

Note: $\mathrm{t} \longrightarrow \mathrm{z}$ as n increases

Student's t Table

Upper Tail Area				$\begin{gathered} \text { Let: } \mathrm{n}=3 \\ \mathrm{df}=n-1=2 \\ \alpha=.10 \\ \alpha / 2=.05 \end{gathered}$
df	. 25	. 10	. 05	
1	1.000	3.078	6.314	
2	0.817	1.886	2.920	
3	0.765	1.638	2.353	
The body of the table contains t values, not probabilities				0

t distribution values				
With comparison to the z value				
Confidence Level	$\begin{gathered} \mathrm{t} \\ (10 \text { d.f. }) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (20 \text { d.f. }) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (30 \text { d.f. }) \\ \hline \end{gathered}$	z
. 80	1.372	1.325	1.310	1.28
. 90	1.812	1.725	1.697	1.64
. 95	2.228	2.086	2.042	1.96
. 99	3.169	2.845	2.750	2.58

Note: $\mathrm{t} \longrightarrow \mathrm{z}$ as n increases

Example

> A random sample of $n=25$ hass $x=50$ and $s=8$. Form a 95% confidence interval for μ

Approximation for Large Samples

Since t approaches z as the sample size increases, an approximation is sometimes used when $n \geq 30$:

Correct
formula

$$
\bar{X} \pm t_{(1-\alpha / 2)}^{(n-1)} \frac{s}{\sqrt{n}}
$$

Approximation
for large n

$$
\bar{X} \pm \mathrm{Z}_{(0.5-\alpha / 2)} \frac{S}{\sqrt{n}}
$$

Determining Sample Size

- The required sample size can be found to reach a desired half width (H) and level of confidence (1- α)
\square Required sample size, σ known:

$$
n=\frac{z_{(0.5-\alpha / 2)}^{2} \sigma^{2}}{H^{2}}=\left(\frac{z_{(0.5-\alpha / 2)} \sigma}{H}\right)^{2}
$$

Determining Sample Size

- The required sample size can be found to reach a desired half width (H) and level of confidence ($1-\alpha$)

■Required sample size, σ unknown:

$$
n=\frac{z_{(0.5-\alpha / 2}^{2} \mathrm{~s}^{2}}{H^{2}}=\left(\frac{\mathrm{z}_{(0.5-\alpha / 2)} \mathrm{s}}{H}\right)^{2}
$$

Required Sample Size Example

> If $\sigma=45$, what sample size is needed to be 90% confident of being correct within $\pm 5 ?$

Confidence Interval Estimates

Confidence Intervals (1- α) \%

1. Standard Normal

> Two-sided : $\bar{X} \pm Z_{(0.5-\alpha / 2)} \frac{\sigma}{\sqrt{n}}$
> One-sided Upper : $\mu \leq \bar{X}+Z_{(0.5-\alpha)} \frac{\sigma}{\sqrt{n}}$
> One-sided Lower : $\mu \geq \bar{X}-Z_{(0.5-\alpha)} \frac{\sigma}{\sqrt{n}}$
2. T distribution

$$
\begin{aligned}
& \text { Two - sided : } \bar{X} \pm t_{(1-\alpha / 2)}^{(n-1)} \frac{s}{\sqrt{n}} \\
& \text { One-sided Upper : } \mu \leq \bar{X}+t_{(1-\alpha)}^{(n-1)} \frac{s}{\sqrt{n}} \\
& \text { One-sided Lower : } \mu \geq \bar{X}-t_{(1-\alpha)}^{(n-1)} \frac{s}{\sqrt{n}}
\end{aligned}
$$

YDI 10.17

A beverage dispensing machine is calibrated so that the amount of beverage dispensed is approximately normally distributed with a population standard deviation of 0.15 deciliters (dL).

- Compute a 95% confidence interval for the mean amount of beverage dispensed by this machine based on a random sample of 36 drinks dispensing an average of 2.25 dL .
- Would a 90\% confidence interval be wider or narrower than the interval above.
- How large of a sample would you need if you want the width of the 95% confidence interval to be 0.04 ?

YDI 10.18

A restaurant owner believed that customer spending was below the usual spending level. The owner takes a simple random sample of 26 receipts from the previous weeks receipts. The amount spent per customer served (in dollars) was recorded and some summary measures are provided:
$n=26, x=10.44, s^{2}=7.968$

- Assuming that customer spending is approximately normally distributed, compute a 90% confidence interval for the mean amount of money spent per customer served.
- Interpret what the 90\% confidence interval means.

