Chapter 8

Introduction to Hypothesis Testing

Fall 2006 - Fundamentals of Business Statistics

Chapter Goals

After completing this chapter, you should be able to:

- Formulate null and alternative hypotheses for applications involving a single population mean
- Formulate a decision rule for testing a hypothesis
- Know how to use the test statistic, critical value, and p-value approaches to test the null hypothesis

Fall 2006 - Fundamentals of Business Statistics

Testing Theories

Hypotheses Competing theories that we want to test about a population are called *Hypotheses* in statistics. Specifically, we label these competing theories as *Null Hypothesis* (H_0) and *Alternative Hypothesis* (H_1 or H_A).

 H_0 : The null hypothesis is the status quo or the prevailing viewpoint.

 H_A : The alternative hypothesis is the competing belief. It is the statement that the researcher is hoping to prove.

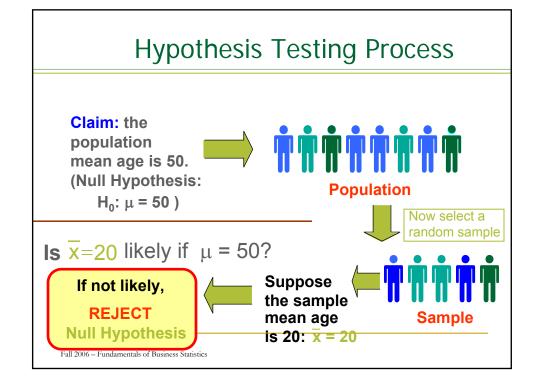
Fall 2006 - Fundamentals of Business Statistics

3

The Null Hypothesis, H_0

(continued)

- Begin with the assumption that the null hypothesis is true
- Refers to the status quo
- Always contains "=", "≤" or "≥" sign

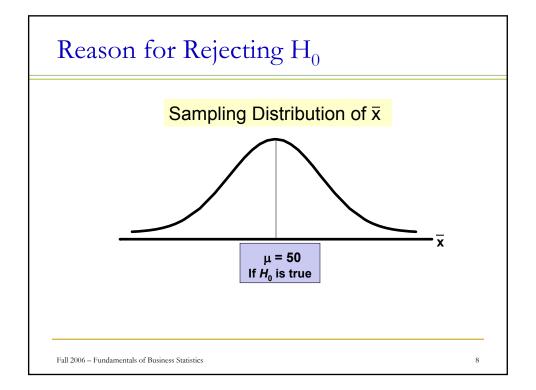

May or may not be rejected

Fall 2006 - Fundamentals of Business Statistics

The Alternative Hypothesis, H_A

- Challenges the status quo
- Never contains the "=", "≤" or "≥" sign
- Is generally the hypothesis that is believed (or needs to be supported) by the researcher
- Provides the "direction of extreme"

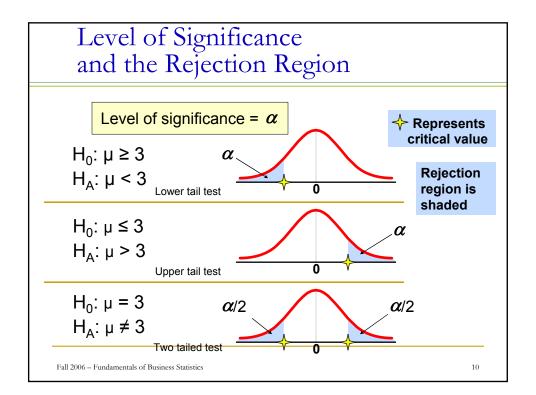
Fall 2006 - Fundamentals of Business Statistics



Deciding Which Theory to Support

Decision making is based on the "rare event" concept. Since the null hypothesis is the status quo, we assume that it is true unless the observed result is extremely unlikely (rare) under the null hypothesis.

Definition: If the data were indeed unlikely to be observed under the assumption that H₀ is true, and therefore we reject H₀ in favor of H_A, then we say that the data are statistically significant.

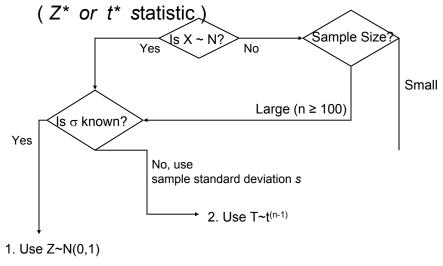

Fall 2006 - Fundamentals of Business Statistics

Level of Significance, α

- Defines unlikely values of sample statistic if null hypothesis is true
 - Defines rejection region of the sampling distribution
- Is designated by α, (level of significance)
- Is selected by the researcher at the beginning
- Provides the critical value(s) of the test

Fall 2006 - Fundamentals of Business Statistics

Critical Value Approach to Testing


- Convert sample statistic (e.g.: \bar{x}) to test statistic (Z^* or t^* statistic)
- Determine the critical value(s) for a specified level of significance α from a table or computer
- If the test statistic falls in the rejection region, reject H₀; otherwise do not reject H₀

Fall 2006 - Fundamentals of Business Statistics

11

Critical Value Approach to Testing

• Convert sample statistic (\bar{x}) to a test statistic

Calculating the Test Statistic: Z

- Two-Sided: H_0 : $\mu = \mu_0$; H_A : μ $\neq \mu_0$
 - Reject H_0 if $Z^* > Z_{(0.5-\alpha/2)}$ or $Z^* < -Z_{(0.5-\alpha/2)}$, otherwise do not reject H_0
- One-Sided Upper Tail: H_0 : $\mu \le$ μ_0 ; H_A : $\mu > \mu_0$
 - □ Reject H_0 if $Z^* > Z_{(0.5-\alpha)}$, otherwise do not reject H_0
- One-Sided Lower Tail: $H_0: \mu \ge$ μ_0 ; H_A : $\mu < \mu_0$
 - □ Reject H_0 if $Z^* < -Z_{(0.5-\alpha)}$, otherwise do not reject H_0

Fall 2006 - Fundamentals of Business Statistics

13

T test Statistic

- Two-Sided: H_0 : $\mu = \mu_0$; H_A : $\mu \neq \mu_0$
 - \Box Reject H_0 if $t^*>t_{(1-\alpha/2)}^{(n-1)}$ or $t^*<-t_{(1-\alpha/2)}^{(n-1)}$, otherwise do not reject H_0
- One-Sided Upper Tail: $H_0: \mu \le \mu_0$; $H_A: \mu > \mu_0$ Reject H_0 if $t^* > t_{(1-\alpha)}^{(n-1)}$, otherwise do not reject H_0
- One-Sided Lower Tail: $H_0: \mu \ge \mu_0$; $H_A: \mu < \mu_0$

$$t^* = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}}$$

Fall 2006 - Fundamentals of Business Statistics

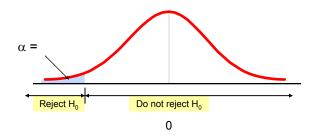
Review: Steps in Hypothesis Testing

- Specify the population value of interest
- Formulate the appropriate null and alternative hypotheses
- 3. Specify the desired level of significance
- 4. Determine the rejection region
- Obtain sample evidence and compute the test statistic
- 6. Reach a decision and interpret the result

Fall 2006 - Fundamentals of Business Statistics

15

Hypothesis Testing Example


Test the claim that the true mean # of TV sets in US homes is less than 3. Assume that $\sigma = 0.8$

- 1. Specify the population value of interest
- Formulate the appropriate null and alternative hypotheses
- 3. Specify the desired level of significance

Hypothesis Testing Example

• 4. Determine the rejection region

(continued)

Reject H_0 if Z^* test statistic < otherwise do not reject H_0

Fall 2006 - Fundamentals of Business Statistics

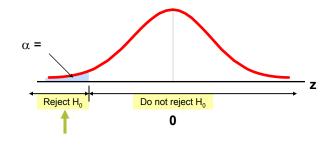
17

Hypothesis Testing Example

 5. Obtain sample evidence and compute the test statistic

A sample is taken with the following results:

 $n = 100, \ x = 2.84 \ (\sigma = 0.8 \text{ is assumed known})$


□ Then the test statistic is:

$$Z^* = \frac{\overline{x} - \mu}{\frac{\sigma}{\sqrt{n}}} =$$

Fall 2006 - Fundamentals of Business Statistics

Hypothesis Testing Example (continued)

6. Reach a decision and interpret the result

Since $Z^* = -2.0 <$

Fall 2006 - Fundamentals of Business Statistics

19

p-Value Approach to Testing

- p-value: Probability of obtaining a test statistic more extreme than the observed sample value given H₀ is true
- Also called observed level of significance
- Smallest value of α for which H₀ can be rejected

Fall 2006 - Fundamentals of Business Statistics

p-Value Approach to Testing

- Convert Sample Statistic to Test Statistic (Z* or t* statistic)
- Obtain the p-value from a table or computer
- Compare the p-value with α
 - $\ \square$ If p-value < α , reject H_0
 - □ If p-value $\geq \alpha$, do not reject H₀

Fall 2006 - Fundamentals of Business Statistics

21

P-Value Calculation

Z test statistic

- Two-Sided: $2 \times \min \{P(Z \ge Z^*, Z \le Z^*)\}$
- One-Sided Upper Tail P(Z ≥ Z*)
- One-Sided Lower Tail $P(Z \le Z^*)$

T test statistic

- Two-Sided: 2 ×min {P(t ≥ t*,t ≤ t*)}
- One-Sided Upper Tail P(t ≥ t*)
- One-Sided Lower Tail $P(t \le t^*)$

Fall 2006 - Fundamentals of Business Statistics

p-value example

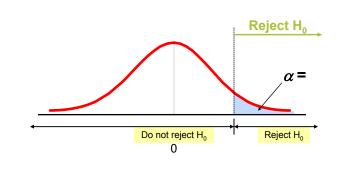
Fall 2006 - Fundamentals of Business Statistics

23

Example: Upper Tail z Test for Mean (σ Known)

A phone industry manager thinks that customer monthly cell phone bill have increased, and now average over \$52 per month. The company wishes to test this claim. (Assume σ = 10 is known)

Form hypothesis test:


 H_0 : $\mu \le 52$ the average is not over \$52 per month

 H_A : $\mu > 52$ the average is greater than \$52 per month (i.e., sufficient evidence exists to support the manager's claim)

Fall 2006 - Fundamentals of Business Statistics

Example: Find Rejection Region

(continued)

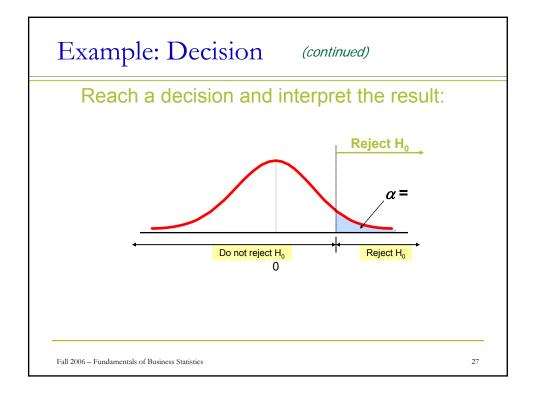
Fall 2006 - Fundamentals of Business Statistics

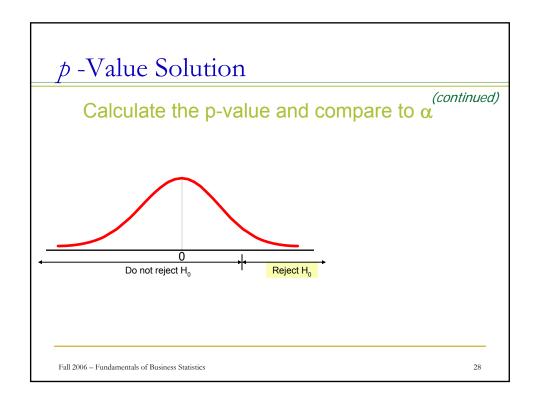
25

Example: Test Statistic

(continued)

Obtain sample evidence and compute the test statistic


A sample is taken with the following results:


n = 64, x = 53.1 (σ =10 was assumed known)

Then the test statistic is:

$$Z^* = \frac{x - \mu}{\frac{\sigma}{\sqrt{n}}} =$$

Fall 2006 - Fundamentals of Business Statistics

Example: Two-Tail Test (σ Unknown)

The average cost of a hotel room in New York is said to be \$168 per night. A random sample of 25 hotels resulted in \overline{X} = \$172.50 and s = \$15.40. Test at the α = 0.05 level.

(Assume the population distribution is normal)

 H_0 : $\mu = 168$ H_A : $\mu \neq 168$

Fall 2006 - Fundamentals of Business Statistics

Outcomes and Probabilities

Possible Hypothesis Test Outcomes

	State of Nature	
Decision	H _o True	H ₀ False
Do Not Reject H ₀	No error (1 - α)	Type II Error (β)
Reject H ₀	Type I Error (α)	No Error (1 - β)

Key: **Outcome** (Probability)

Fall 2006 - Fundamentals of Business Statistics