## Chapter 13

Introduction to Linear Regression and Correlation Analysis

Fall 2006 - Fundamentals of Business Statistics

1

## Chapter Goals

To understand the methods for displaying and describing relationship among variables

Fall 2006 - Fundamentals of Business Statistics

#### Methods for Studying Relationships

- Graphical
  - Scatterplots
  - Line plots
  - □ 3-D plots
- Models
  - Linear regression
  - Correlations
  - Frequency tables

Fall 2006 - Fundamentals of Business Statistics

3

#### Two Quantitative Variables

The *response variable*, also called the *dependent variable*, is the variable we want to predict, and is usually denoted by *y*.

The *explanatory variable*, also called the *independent variable*, is the variable that attempts to explain the response, and is denoted by *x*.

Fall 2006 - Fundamentals of Business Statistics

| Response ( y) | Explanatory (x) |
|---------------|-----------------|
| leight of son |                 |
| Veight        |                 |

#### Scatter Plots and Correlation

- A scatter plot (or scatter diagram) is used to show the relationship between two variables
- Correlation analysis is used to measure strength of the association (linear relationship) between two variables
  - Only concerned with strength of the relationship
  - No causal effect is implied

Fall 2006 - Fundamentals of Business Statistics







#### Correlation Coefficient

(continued)

- The population correlation coefficient ρ
   (rho) measures the strength of the association between the variables
- The sample correlation coefficient r is an estimate of p and is used to measure the strength of the linear relationship in the sample observations

Fall 2006 - Fundamentals of Business Statistics

### Features of $\rho$ and r

- Unit free
- Range between -1 and 1
- The closer to -1, the stronger the negative linear relationship
- The closer to 1, the stronger the positive linear relationship
- The closer to 0, the weaker the linear relationship

Fall 2006 - Fundamentals of Business Statistics





#### **YDI 7.3**

What kind of relationship would you expect in the following situations:

- age (in years) of a car, and its price.
- number of calories consumed per day and weight.
- height and IQ of a person.

Fall 2006 - Fundamentals of Business Statistics

#### YDI 7.4

Identify the two variables that vary and decide which should be the independent variable and which should be the dependent variable. Sketch a graph that you think best represents the relationship between the two variables.

- The size of a persons vocabulary over his or her lifetime.
- 2. The distance from the ceiling to the tip of the minute hand of a clock hung on the wall.

Fall 2006 - Fundamentals of Business Statistics

15

#### Introduction to Regression Analysis

- Regression analysis is used to:
  - Predict the value of a dependent variable based on the value of at least one independent variable
  - Explain the impact of changes in an independent variable on the dependent variable

Dependent variable: the variable we wish to explain

Independent variable: the variable used to explain the dependent variable

Fall 2006 - Fundamentals of Business Statistics

## Simple Linear Regression Model

- Only one independent variable, x
- Relationship between x and y is described by a linear function
- Changes in y are assumed to be caused by changes in x

Fall 2006 - Fundamentals of Business Statistics



#### Population Linear Regression The population regression model: Random Population Population Independent Error Slope Variable y intercept term, or Coefficient Dependent residual Variable Linear component Random Error component Fall 2006 - Fundamentals of Business Statistics 19

## Linear Regression Assumptions

- Error values (ε) are statistically independent
- Error values are normally distributed for any given value of x
- The probability distribution of the errors is normal
- The probability distribution of the errors has constant variance
- The underlying relationship between the x variable and the y variable is linear

Fall 2006 - Fundamentals of Business Statistics







#### Residual

A **residual** is the difference between the observed response y and the predicted response  $\hat{y}$ . Thus, for each pair of observations  $(x_i, y_i)$ , the  $i^{th}$  residual is  $e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x)$ 

Fall 2006 - Fundamentals of Business Statistics

### Least Squares Criterion

• b<sub>0</sub> and b<sub>1</sub> are obtained by finding the values of b<sub>0</sub> and b<sub>1</sub> that minimize the sum of the squared residuals

$$\sum e^{2} = \sum (y - \hat{y})^{2}$$

$$= \sum (y - (b_{0} + b_{1}x))^{2}$$

Fall 2006 - Fundamentals of Business Statistics

25

# Interpretation of the Slope and the Intercept

- b<sub>0</sub> is the estimated average value of y when the value of x is zero
- b<sub>1</sub> is the estimated change in the average value of y as a result of a one-unit change in x

Fall 2006 - Fundamentals of Business Statistics

## The Least Squares Equation

■ The formulas for b<sub>1</sub> and b<sub>0</sub> are:

$$b_1 = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sum (x - \overline{x})^2}$$

algebraic equivalent:

$$b_1 = \frac{\sum xy - \frac{\sum x\sum y}{n}}{\sum x^2 - \frac{(\sum x)^2}{n}}$$

and

$$b_0 = \overline{y} - b_1 \overline{x}$$

Fall 2006 - Fundamentals of Business Statistics

27

#### Finding the Least Squares Equation

- The coefficients b<sub>0</sub> and b<sub>1</sub> will usually be found using computer software, such as Excel, Minitab, or SPSS.
- Other regression measures will also be computed as part of computer-based regression analysis

Fall 2006 - Fundamentals of Business Statistics

### Simple Linear Regression Example

- A real estate agent wishes to examine the relationship between the selling price of a home and its size (measured in square feet)
- A random sample of 10 houses is selected
  - Dependent variable (y) = house price in \$1000s
  - □ Independent variable (x) = square



Fall 2006 - Fundamentals of Business Statistics

29

### Sample Data for House Price Model

| House Price in \$1000s | Square Feet |  |  |
|------------------------|-------------|--|--|
| (y)                    | (x)         |  |  |
| 245                    | 1400        |  |  |
| 312                    | 1600        |  |  |
| 279                    | 1700        |  |  |
| 308                    | 1875        |  |  |
| 199                    | 1100        |  |  |
| 219                    | 1550        |  |  |
| 405                    | 2350        |  |  |
| 324                    | 2450        |  |  |
| 319                    | 1425        |  |  |
| 255                    | 1700        |  |  |



Fall 2006 - Fundamentals of Business Statistics





# Interpretation of the Intercept, b<sub>0</sub>

house price = 98.248 + 0.110 (square feet)

- b<sub>0</sub> is the estimated average value of Y when the value of X is zero (if x = 0 is in the range of observed x values)
- Here, no houses had 0 square feet, so b<sub>0</sub> = 98.24833 just indicates that, for houses within the range of sizes observed, \$98,248.33 is the portion of the house price not explained by square fee

Fall 2006 - Fundamentals of Business Statistics

33

## Interpretation of the Slope Coefficient, b.

house price = 98.24833 + 0.10977 (square feet)

- b<sub>1</sub> measures the estimated change in the average value of Y as a result of a one-unit change in X
  - □ Here b<sub>4</sub> = .1097 tells us that the average value of a house increases by .10977(\$1000) = \$109.77, on average, for each additional one square foot of size

Fall 2006 – Fundamentals of Business Statistics

## Least Squares Regression Properties

- The sum of the residuals from the least squares regression line is 0 ( $\sum (y-\hat{y})=0$ )
- The sum of the squared residuals is a minimum (minimized  $\sum (y-\hat{y})^2$ )
- The simple regression line always passes through the mean of the y variable and the mean of the x variable
- The least squares coefficients are unbiased estimates of  $β_0$  and  $β_1$

Fall 2006 - Fundamentals of Business Statistics

35

#### YDI 7.6

The growth of children from early childhood through adolescence generally follows a linear pattern. Data on the heights of female Americans during childhood, from four to nine years old, were compiled and the least squares regression line was obtained as  $\hat{y} = 32 + 2.4x$  where  $\hat{y}$  is the predicted height in inches, and x is age in years.

- Interpret the value of the estimated slope  $b_1 = 2.4$ .
- Would interpretation of the value of the estimated y-intercept, b<sub>0</sub> = 32, make sense here?
- What would you predict the height to be for a female American at 8 years old?
- What would you predict the height to be for a female American at 25 years old? How does the quality of this answer compare to the previous question?

Fall 2006 - Fundamentals of Business Statistics

## Coefficient of Determination, R<sup>2</sup>

- The coefficient of determination is the portion of the total variation in the dependent variable that is explained by variation in the independent variable
- The coefficient of determination is also called R-squared and is denoted as R<sup>2</sup>

$$0 \le R^2 \le 1$$

Fall 2006 - Fundamentals of Business Statistics

37

## Coefficient of Determination, R<sup>2</sup>

(continued)

**Note:** In the single independent variable case, the coefficient of determination is

$$R^2 = r^2$$

where:

 $R^2$  = Coefficient of determination r = Simple correlation coefficient

Fall 2006 - Fundamentals of Business Statistics







#### Standard Error of Estimate

- The standard deviation of the variation of observations around the regression line is called the *standard error of estima*  $s_{\varepsilon}$
- The standard error of the regression slope coefficient (b<sub>1</sub>) is given by s<sub>b1</sub>

Fall 2006 - Fundamentals of Business Statistics





## Inference about the Slope: t Test

- t test for a population slope
  - □ Is there a linear relationship between x and y?
- Null and alternative hypotheses
  - $□ H_0: β_1 = 0$  (no linear relationship)
  - □  $H_1$ :  $\beta_1 \neq 0$  (linear relationship does exist)
- Test statistic

 $t = \frac{b_1 - \beta_1}{s_{b_1}}$ 

d.f. = n - 2

where:

b<sub>1</sub> = Sample regression slope coefficient

 $\beta_1$  = Hypothesized slope

s<sub>b1</sub> = Estimator of the standard error of the slope

Fall 2006 – Fundamentals of Business Statistics

## Inference about the Slope: t Test

(continued)

| House Price<br>in \$1000s<br>(y) | Square Feet (x) |  |  |
|----------------------------------|-----------------|--|--|
| 245                              | 1400            |  |  |
| 312                              | 1600            |  |  |
| 279                              | 1700            |  |  |
| 308                              | 1875            |  |  |
| 199                              | 1100            |  |  |
| 219                              | 1550            |  |  |
| 405                              | 2350            |  |  |
| 324                              | 2450            |  |  |
| 319                              | 1425            |  |  |
| 255                              | 1700            |  |  |

#### **Estimated Regression Equation:**

house price = 98.25 + 0.1098 (sq.ft.)

The slope of this model is 0.1098

Does square footage of the house affect its sales price?



Fall 2006 - Fundamentals of Business Statistics





### Regression Analysis for Description

|             | Coefficients | Standard Error | t Stat  | P-value | Lower 95% | Upper 95% |
|-------------|--------------|----------------|---------|---------|-----------|-----------|
| Intercept   | 98.24833     | 58.03348       | 1.69296 | 0.12892 | -35.57720 | 232.07386 |
| Square Feet | 0.10977      | 0.03297        | 3.32938 | 0.01039 | 0.03374   | 0.18580   |

Since the units of the house price variable is \$1000s, we are 95% confident that the average impact on sales price is between \$33.70 and \$185.80 per square foot of house size

This 95% confidence interval does not include 0.

Conclusion: There is a significant relationship between house price and square feet at the .05 level of significance

Fall 2006 - Fundamentals of Business Statistics

49

### Residual Analysis

- Purposes
  - Examine for linearity assumption
  - Examine for constant variance for all levels of x
  - Evaluate normal distribution assumption
- Graphical Analysis of Residuals
  - Can plot residuals vs. x
- □ Can create histogram of residuals to check for normality





