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5 
Cholesteric Liquid Crystals: 
Defects and Topology 

O.D. LAVRENTOVICH AND M. KLEMAN 

This chapter reviews the basic static properties of defects in cholesteric liquid 
crystals. The elastic features of the cholesteric phase with deformations at 
short-range and long-range (as compared to the cholesteric pitch) scales are 
discussed. Spatial confinement, together with the relative smallness of the 
twist elastic constant, often leads to twisted and thus optically active struc- 
tures even when the liquid crystal is composed of nonchiral molecules. The 
application of topological methods is illustrated using the models of twisted 
strips, closed DNA molecules, and defect lines-disclinations and dis- 
locations. The homotopy classification of defects in cholesterics is similar to 
that in biaxial nematics, and predicts phenomena such as the topological 
entanglement of disclinations and the formation of nonsingular soliton con- 
figurations. The spatial confinement of ordered structures (represented, for 
example, by cholesteric droplets suspended in an isotropic matrix) imposes 
certain restrictions on the configurations of the order parameter and requires 
the appearance of topological defects in the ground state. The layered 
structure of cholesterics leads to the formation of large-scale defects such as 
focal conic domains and oily streaks. 

5.1 Introduction 

Chiral liquid crystals belong to a wide class of soft condensed phases. The 
director field in the ground state of chiral phases is nonuniform because 
molecular interactions lack inversion symmetry. Among the broad variety of 
spatially distorted structures the simplest one is the cholesteric phase in 
which the director n is twisted into a helix. The spatial scale of background 
deformations, e.g., the pitch p of the helix, is normally much larger than the 
molecular size (p 2 0.1 pm) since the interactions that break the inversion 
symmetry are weak. 

The twisted ground state of chiral liquid crystals willingly accepts the 
additional deformations imposed by external fields, surface interactions, or by 
a tendency of molecules to form smectic layers, hexagonal order, or double- 
twist arrangements. Very often such additional deformations result in topo- 
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logical defects. The complexity of twisted structures with defects makes the 
cholesteric liquid crystals an important subject to test the modem concepts 
of relationship between the symmetry of molecular interactions and macro- 
molecular organization. The connection between symmetry and defects has 
been for decades at the very heart of physics [I]-[3]; nowadays, it becomes 
the subject of studies in biology. 

In this chapter we discuss the basic features of deformed structures in 
liquid crystals with chiral order. The characteristic scale of these deforma- 
tions has to be compared to the scale p of ground deformations. Properties 
of defects and deformations that occur at scales smaller and larger than p are 
quite different. 

We start this chapter with a brief introduction to the elastic theory of 
cholesteric phases with the object of clarifying the difference in description of 
short- and long-range deformations (Section 5.2). Section 5.3 discusses 
"weak" twist deformations. Weak twist deformations are not necessarily 
caused by the chiral nature of the liquid crystal molecules. The recent dis- 
covery [4] of chiral domains in smectics composed of achiral molecules con- 
firms the general thesis that chirality in soft-matter systems does not always 
require chiral centers in the molecules, see the paper by G. Heppke and 
D. Moro [5]. Examples of chiral bulk deformations can be seen even in much 
simpler nematic samples, where the symmetry is broken either because of 
the explicit action of the boundary conditions or because of a more subtle 
mechanism that involves the smallness of the twist elastic constant Kz. 
Section 5.4 explains the elementary topological concepts employing a model 
of twisted strips; related to these strips are closed DNA molecules. The 
homotopy classification of line defects, disclinations, and dislocations, and 
its predictions (such as the topological entanglement of lines) are presented 
in Section 5.5. Homotopy theory defines the necessary conditions for the 
formation of defects by deducing the classes of possible defects from the 
symmetry group of the order parameter. Sufficient conditions are often pro- 
vided by the spatial boundedness of the ordered media. In Section 5.6 
we describe how the spatial confinement of an ordered system leads to the 
appearance of defects in its equilibrium state. Section 5.7 reviews the topo- 
logical solitons (or "textures") which are topologically stable but non- 
singular. Section 5.8 discusses defects such as focal conic domains and the 
oily streaks provoked by the tendency of cholesteric layers to keep an equi- 
distance in large-scale deformations. Finally, Section 5.9 is an look forward 
to possible further studies in the field of defects in chiral liquid crystals. 

5.2 Elastic Theory and the Hierarchy of Scales 

We deal with situations where the director field deviates from the ideal helix. 
There are two complementary approaches to describe distortions in the 
cholesteric phase, depending on the ratio Llp, where L is the characteristic 
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scale of the deformations or the size of the liquid crystal sample. We distin- 
guish-weakly twisted cholesterics (Llp  << 1) and strongly twisted (Llp >> 1) 
cholesterics. 

5.2.1 Weakly Twisted Cholesterics 
In the absence of external fields or bounding surfaces, the equilibrium 
director configuration of the uniaxial cholesteric phase has the form 

n(r) = u cos ~ ( r )  + v sin ~ ( r ) .  (5.1) 

Here u and v are two mutually perpendicular unit vectors (with constant 
orientation in space) and 

where qo = 2nlp and = u x v is a unit vector along the helix axis [I]-[3]. 
The twisted configuration (5.1) minimizes the free elastic energy density 

f = ~ ~ ~ ( d i v n ) ~ + ~ ~ ~ ( n ~ c u r l n + ~ ~ ) ~ + ~ K ~ ( n x c u r l n ) ~ ,  (5.3) 

with splay (Kl), twist (K2), and bend (K3) terms; qo is positive for a right- 
handed cholesteric, and negative for a left-handed cholesteric provided the 
trihedron (u,v,x) forms a right-handed coordinate system. For example, 
(n,, ny, n,) = (cos qoz, sin qoz, 0) yields f = 0 in the Cartesian coordinate 
frame for both qo > 0 and qo < 0. 

Expression (5.3) contains only the first derivatives of the director. Since 
f is quadratic in ni,j, f - (nk,i)2, the second derivatives ni,;k might bring 
comparable contributions to f: Invariant terms involving second derivatives 
are usually written as the sum of the mixed splay-bend (KI3) and saddle- 
splay (K24) terms: 

fi3 + h4 = K13 div(n div n) - K24 div(n div n + n x curl n) . (5.4) 

Although it is not difficult to see that the saddle-splay term can be reex- 
pressed as a quadratic form of the first derivatives, div(n div n + n x curl n) = 
ni,in,,j - ni,,n,,i, we will keep the form (5.4) for subsequent discussion. The 
divergence nature of the terms (5.4) allows us to transform the volume inte- 
gral J(fI3 + fi4) dV into a surface integral by virtue of the Gauss theorem 

where g = (K13 - K24)n div n - K24n x curl n and v is the unit vector of the 
outer normal to the surface A. However, K13 and K24 must not be neglected 
on the grounds of transformation (5.5). Whatever the way of integration of 
f, fi3, and h 4 ,  the resulting elastic energy scales linearly with the size of the 
deformed system. The difference between f and (A3 + h 4 )  is more subtle and 
shows up when one looks for an equilibrium director configuration by min- 
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imizing the total free-energy functional J( f + f13 + f24) dV: the K13 and K24 
terms do not alter the Euler-Lagrange variational derivative for the bulk, 
but they can influence the equilibrium director through the boundary condi- 
tions at the surface A (which might also be the imaginary surface of the de- 
fect cores). Since the procedure of inclusion of the Kl3 term into the mini- 
mization problem is still debated, we will not consider this term here. The 
K24 term will be preserved since it brings an important insight into the nature 
of some chiral structures, such as double-twist configurations. 

When L l p  << 1, the cholesteric does not differ much from the nematic 
phase. No wonder therefore that optical observations for weakly twisted 
cholesterics reveal "thick" (nonsingular) and "thin" (singular) line defects 
-disclinations similar to that in the nematic phase. Moreover, in droplets of 
the so-called "compensated" cholesteric mixtures with extremely small L l p  
one can observe point defects [6] which, from the topological point of view, 
are allowed only in a nematic phase. 

The behavior of weakly twisted structures depends on the relative values 
of the elastic constants in (5.3) and (5.4). As we shall see in the next section, 
splay and bend distortions are often relaxed by twist. It is therefore impor- 
tant to know the elastic constants for different types of deformations; these 
constants are specified by molecular structures and interactions. 

Small Molecules Liquid Crystals (SMLC's). In most cases, K2 is small as 
compared to KI and K3. For example, for 5CB [7]: 

Kl = 0.64 x 1oP6dyn, K2 = 0.3 x 10-~dyn, K3 = 1 x lov6 dyn. 

The coefficient K24 is very hard to determine; recent studies reviewed by 
Crawford and Zumer [8] indicate that in nematics K24 - KI, K3. 

Liquid Crystal Polymers (LCP) [9]. One does not find in this case the sim- 
plicity of SMLCs but, on the other hand, one expects that the coefficients 
would relate in an interesting way to molecular conformations-a field of 
research which is still open to investigation. A general result is that K2 
remains smaller than KI and K3, and is of the same order of magnitude as 
SMLCs. This result is rather intuitive, since the molecular length does not 
play a priori an important role in a pure twist deformation. On the other 
hand, Kl and K3 are strongly modified. In rigid polymers, K1 and K3 in- 
crease with molecular weight and K3 increases faster than KI. In serniflexible 
polymers, two features appear when the molecular weight increases. First, 
the molecular length I becomes larger than the persistence length A; this has 
an effect on K3, whose variation with I reaches a maximum when I > A. 
Second, the density of chain-ends decreases when I increases; this has a direct 
effect on KI.  In the limit when the chains become infinitely long, any splay 
deformation at constant polymer density is forbidden, and Kl becomes 
increasingly large. The chain ends contribute to the total energy by the elas- 
tic deformation they carry and by their entropy that gives rise to a large 
contribution to K1. 
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5.2.2 Strongly Twisted Cholesterics 
At L l p  >> 1, the elastic properties of the cholesteric are close to that of the 
lamellar phases. Here again, two different situations are possible. First, the 
cholesteric layers might be only slightly bent and preserve the topology of 
flat surfaces. These small deformations can be described by a single scalar 
variable, the component of the displacement u(x, y, z) of the layers along the 
normal of the nonperturbed layers, taken as the z-axis. The free-energy 
density in terms of the layer dilatation and small tilts is [I]-[3]: 

where one introduces renormalized constants B  = K2qi and K  = i ~ 3 ;  note 
that this renormalization does not take into account divergence terms. 

When the deviations of layers from the flat geometry are substantial, the 
deformations are more appropriately characterized by the principal curva- 
tures a1 = 1/R1 and a 2  = l /R2 of the cholesteric layers [lo]. The elastic free 
energy density can be cast in the form 

where y = Ip - po)/po is a relative dilatation of the layers. Scaling argu- 
ments show that the curvature elasticity f, = !K(al + 0 2 ) ~  and the "posi- 
tional" elasticity f, = {By2 should be treated on different footings when 
L l p  >> 1. Let L be a typical length of the deformation that shows up in all 
three spatial directions. The corresponding energies are 

F, - KL and F, - B L ~ ;  (5.8) 

hence $IF, - ( ~ 1 ~ ) ~  >> 1.  In other words, at L l p  >> 1, the theory treats the 
cholesteric medium as a system .of equidistant (and thus parallel) layers with 
predominantly curvature distortions. Generally, the boundary conditions 
can be satisfied only by the appearance of large-scale defects, such as focal 
conic domains and oily streaks. 

The coarse-grain model (5.7) does not take into account the saddle-splay 
term A, = Kgl 02, where G = a1 02 is the Gaussian curvature of layers, and 

is the saddle-splay constant (dzferent from KZq in (5.4)). The dependence 
of R on the Frank constants has not been calculated so far. Partially, the 
omission is justified by the fact that the term does not change when the 
layers experience small fluctuations around the basic topologies (flat layers, 
cylinders, tori, etc.). Transitions between these geometries, such as nuclea- 
tion of a focal conic domain in a system of flat layers, should involve the R 
term. According to the Gauss-Bonnet theorem, the integral of the Gaussian 
curvature over a closed manifold is a constant defined by the Euler charac- 
teristic E of the manifold 
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E = 0 for a torus and E = 2 for a sphere. This topological feature makes the 
Gaussian curvature insensitive to small elastic deformations and sensitive 
to topological changes. In addition, it is precisely the nonzero value of the 
integral (5.9) that brings topological defects into the ground state of the con- 
fined liquid crystals, such as suspended droplets, as discussed in Section 5.6. 

5.3 Weak Twist Deformations 

5.3.1 Conjnement-Induced Twists 
As was established a long time ago by Mauguin [I 11, pure twist deforma- 
tions can be produced by placing a nonchiral nematic liquid crystal between 
two parallel rubbed solid surfaces and then rotating one plate in its own 
plane relative to the other. Such a structure is optically active despite the fact 
that the nematic molecules are not chiral. The twist is maintained by the 
surface "azimuthal" anchoring. 

One would expect that when the director is allowed to rotate in the plane 
of one of the plates (an "isotropic" plate with no azimuthal anchoring), the 
twist and optical activity would disappear. Surprisingly, this was not what 
Meyerhofer et al. observed by placing nematic droplets on a rubbed plate 
and letting the upper surface of the liquid free [12]. The sessile droplets 
clearly demonstrated significant optical activity, even when there was no 
external electric or magnetic field. The phenomenon might be explained if 
one takes into account that the free surface of a sessile drop is usually curved 
(except in a rare case of complete wetting) and tilted with respect to the 
horizontal supporting plate. The wedge geometry forces the director to align 
normally to the thickness gradient (say, along axis y in Figure 5.1) in order 
to reduce the amount of splay and thus to reduce the elastic energy. The 
phenomenon can be called a "geometrical anchoring" [13]. However, when 
the bottom plate is rubbed along any direction different from y, the compe- 
tition between the two easy axes might result in twist. 

To show this, let us calculate the energy per unit area of the wedge, 
neglecting director distortions in the plane of the cell [13]. We parametrize 
the director through the polar angle 13 and the azimuthal angle y, as 
(n,, ny, n,) = (sin B(z) cos y,(z), sin B(z) sin y,(z), cos O(z)). At the bottom plate, 
B(z = 0) = n/2 and y,(z = 0) = 0. The director is tangential to the upper 
surface. If the two bounding surfaces were parallel, then in equilibrium 
B(z) = n/2 and p(z) = 0. Suppose now that the upper surface is tilted 
around the y-axis by an angle y. The polar angle O(z = d) now depends on y 
and on the azimuthal parameter y,,, which is the angle between n and a fixed 
axis x' in the inclined upper plane: O(z = d) = arccos(sin y cosy,,,). Small 
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FIGURE 5.1. A tangentially aligned nematic liquid crystal confined between two 
plates; the bottom plate is rubbed, the top plate is isotropic. The tilt of the upper plate 
tends to reorient the director normally to the plane of the figure (geometrical an- 
choring). In combination with surface anchoring at the bottom plate, this results in 
the twist deformation. 

deviations from the uniform state, 0(z) -, n/2 + 0, (z) and p(z) -t 0 + p1 (z) 
lead to the free energy density f = ~ 1 0 % ~  + ~zp:,. The bulk equilibrium 
equations, 01,,, = 0 and p,,,; = 0, together with the boundary conditions 
above, lead to the energy per unit area 

K1 
2d 

F = - [arcsin(sin y cos po)] 
2d 

(5.10) 

According to (5.10), the equilibrium azimuthal angle at the upper surface 
can be nonzero (Figure 5.2). This implies twist and hence optical activity of 
the sessile droplet. The twist angle increases as the ratio K2/K1 decreases so 
that the effect might be strongly pronounced for nematic polymers such as 
poly-y-benzylglutamate (PBG), where the ratio K2/KI can be as small as 0.1 
or even smaller [14]. 

Twist relaxation of splay and bend is a general phenomenon in materials 
with small Kz. Chiral structures can occur in defective nematic samples even 
when there is no azimuthal anchoring at all. Twisted brushes observed by 
Press and Arrott in textures of lens-shaped nematic droplets floating on the 
water surface are one example [15]. Another well-known illustration of twist 
relaxation is the periodic pattern of stripes that occur in the geometry of 
splay Frederiks transition in polymer nematics with a small (less than 0.33) 
ratio K2/Kl [16]. A field applied normally to the planar nematic cell causes 
stripe structures composed mostly of twist rather than the uniform splay re- 
sponse observed in regular nlaterials. 

An especially clear demonstration of twist relaxation is given by tangen- 
tially anchored spherical nematic droplets suspended in an isotropic matrix 
(glycerin), Figure 5.3. The director lines join two point defects-boojums at 
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-90 -45 0 45 90 
Azimuth $I 0 

FIGURE 5.2. Elastic energy versus azimuthal angle at the top surface for the nematic 
wedge, see text. The twist angle increases with the increase in tilt y and the decrease in 
the ratio K 2 / K I .  

the poles of the droplet. However, instead of a naive picture, with lines being 
meridians that lie in the planes of constant azimuth, one observes a twisted 
structure [17]. The director lines are tilted with respect to the meridional 
planes. This tilt decreases as one approaches the axis of the droplet. As in the 
previous example, the twist replaces energetically costly splay [IS]. Each 
droplet is optically active despite the nonchiral nature of the molecules of 
both the nematic and matrix. Of course, there is an equal number of "left9'- 
and "right7'-handed droplets in the dispersion. 

The droplets shown in Figure 5.3 present in fact a double twist rather than 
a simple unidirectional twist. Double twist is discussed below in relation to 
the saddle-splay coefficient. 

5.3.2 Double Twist 
One may inquire about the meaning of the K24 term in a weakly twisted 
cholesteric; the solution is in the double-twist tendency of cholesterics [19]- 
[21]. Let no be some director, e.g., along the axis Z in Figure 5.4. In the local 
state of the smallest energy, the chiral molecules in the vicinity of no tend to 
rotate helically along all the directions perpendicular to no. This double twist 
is energetically preferable to the one-dimensional twist, at least for some 
chiral materials. 

In cylindrical coordinates, the elementary double-twist configuration is 
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FIGURE 5.3. Double-twisted nematic droplets suspended in an isotropic matrix. The 
central part of the droplet is bright when the polarizers are crossed and one of them is 
aligned along the droplets' axes (a); the central part can be made dark by changing 
the angle between the polarizer and analyzer. This behavior indicates the optical 
activity of the droplets caused by the director twist. The insert shows the director 
configuration at  the droplet's surface. Nematic n-butoxyphenyl ester of nonylhydro- 
benzoic acid dispersed in glycerin [17]. 

with $(O) = 0. The free energy is 

There is no K I 3  term, since divn = 0. Integrating f we see that the K24 term 
contributes to the energy of a cylinder of matter of radius R by the quantity 
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4 

FIGURE 5.4. Blue phases are composed of regions with double twist; three such 
regions, with a singularity that relieves frustration between them, are shown in the 
figure. Two cylinders with double twist match at the contact point if the director tilt 
at their surfaces is n/4; however, the region where all three cylinders meet is singular. 
In current models, such singularities form a network of disclination lines. The circle 
marks the "core" of the disclination; the insert shows the director lines around the 
core. 

which is negative for any value of $(R) # nn, when K24 is positive. The 
nucleation of a double-twisted cholesteric geometry is favored in such a case, 
in particular when Kl is large compared to K3. Examples of double-twist 
geometry are nonsingular disclinations of strength k = 2 in cholesteric 
spherulites (often observed in biopolymers) that are discussed later. 

Another geometry with double twist is met in the chromosome of micro- 
scopic algae, Prorocentrum Micans (dinoflagellate chromosomes), which 
have been studied by optical and electron microscopy techniques [22]. As 
proposed in [19] (see also [23]), the structure contains two k = 4 disclination 
lines which rotate helically about the chromosome axis. The double-twist 
geometry has a limited size, beyond which double twist decreases and frus- 
trations in the system become too large. The layers have a negative Gaussian 
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curvature. This geometry is favored over the spherulitic geometry, probably 
when K1 is smaller than K3, because the k = 4 lines cause splay. Also, while 
the nucleation of the k = 2 geometry is easier with K24 > 0, it is the contrary 
to the chromosome. For a more general discussion, see review [24] on the 
problem of frustration. 

Finally, if K24 is positive and very large, the cylindrical geometry can 
become stable versus the cholesteric phase: this is the origin of the blue 
phases (BPS). In Figure 5.4, as the distance from the Z-axis increases, the 
cholesteric cylindrical shells become flatter and the double twist smoothly 
disappears. The director far-field distribution becomes closer to the one- 
dimensional twist of the usual cholesteric phase; the energy gain is reduced. 
Thus the double twist cannot be extended over the whole three-dimensional 
space. A typical radius of the energy-gaining cylindrical region about the 
no-axis is the half-pitch p / 2 .  (This is the reason why we discuss the double 
twist as a weakly twisted structure; the situation should not be confused with 
the fact that the blue phases usually occur for small-pitch materials). Now 
these cylinders of finite radius cannot tile space continuously. According to 
the current models of blue phases, this frustration is relieved by defect lines 
(of disclination type), either regularly distributed, or in disorder. Figure 5.4 
illustrates how three cylinders of double twist generate a singularity in the 
region where they merge. A word of caution should be said about the inter- 
pretations of planar disclination lines as a source of saddle-splay. There is 
no K24 nor K13 contribution to the elastic energy of a straight planar dis- 
clination of the Frank type, (n,, II,., 11;) = (cos k ~ ,  sin k ~ ,  0), where k is inte- 
ger or half-integer. Both terms vanish when the energy density is integrated 
over the azimuthal angle around the disclination core. A nonvanishing saddle- 
splay energy might come from the regions where the disclinations cross or 
from point defects, if such are present. 

The blue phases of types BPI and BPII are modeled as regular networks of 
disclination lines with periodicity of order p.  Indeed, the three-dimensional 
periodic structure of these phases is revealed in their nonzero shear moduli, 
their ability to grow well-faceted monocrystals and Bragg reflection in the 
visible part of the spectrum (which is natural since p is of the order of a few 
tenths of a micron). The third identified phase, BPIII, that normally occurs 
between the isotropic melt and BPII, is less understood. It might be a melted 
array of disclinations. Note that although most blue phases have been ob- 
served in thermotropic systems, double-twist geometries are relatively fre- 
quently met in textures of biological polymers, like DNA. 

DNA, polypeptides (such as PBG mentioned above), and polysaccharides 
(such as xanthan) and many other biological and nonbiological polymers 
have a definite handedness due to the chiral centers. Rod-like long molecules 
of these materials in water solutions often crystallize into a hexagonal co- 
lumnar phase so that the cross-section normal to the rods reveals a triangu- 
lar lattice. Since the polymers are chiral, close hexagonal packing competes 
with the tendency to twist [25],  [26].  Macroscopic twist can proliferate by 
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FIGURE 5.5. Coexistence of twist and close 
hexagonal packing in a system of chiral rods 
that form a twist grain boundary phase with 
lattices of screw dislocations; unidirectional 
twist perpendicular to the plane of the figure; 
redrawn following [27]. 

introducing screw dislocations into the system [27], [28], in a way akin to the 
twist grain boundary phases of chiral smectics [29], [30]. Two types of defect- 
stabilized phases that combine close packing and twist are possible. One is 
a polymer tilt grain boundary phase, a direct analog of the twist-grain 
boundary phase, and a usual cholesteric with a unidirectional twist, Figure 
5.5. Another is a Moirk grain boundary phase, similar to the blue phases 
with double twist. In the center of a cylindrical element, there is a polymer 
rod; the neighboring polymers twist around it, preserving the hexagonal 
close packing; the cylinders are packed together thanks to the honeycomb 
lattice of screw dislocations [27]. 

For a detailed discussion of the frustrated phases, such as blue, TGB, and 
chiral columnar phases, see the chapters by Bock, Crooker, Kitzerow, and 
Pieranski. 

5.4 Twisted Strips 

An adequate description of defects in ordered condensed media requires in- 
troducing a special mathematical apparatus, viz. the theory of homotopy, 
which is a part of algebraic topology. It is precisely in the language of 
topology that it is possible to associate the character of the ordering of a 
medium and the types of defects arising in it, to find the laws of decay, 
merger, and crossing of defects, and to trace out their behavior during phase 
transitions, etc. The key point is occupied by the concept of a topological 
invariant, often also called a topological charge, which is inherent in every 
defect. The stability of the defect is guaranteed by the conservation of its 
topological invariant. The following simple example of twisted ribbon strips 
gives a flavor of the concept of a topological invariant. 

5.4.1 Topological Charges Illustrated with Twisted Strips 
Consider a set of closed elastic strips. Each strip is characterized by a num- 
ber k that counts the number of times the ends of the strip are twisted by 2;rr 
before they are glued together to produce a ring, Figure 5.6. The ring with 
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FIGURE 5.6. Topologically different rings of elastic strips: (a) nontwisted ring, k = 0; 
(b) Mobius strip, k = i; (c) twisted strip with two different edges, k = 1; and (d) 
twisted strip with two twists of opposite sign, k = 0. 

k = $ Figure 5.6(b), is the well-known Mobius strip. The deformation en- 
ergy stored in any twisted strip is larger than the pure bend energy of the 
k = 0 ring. However, to transform a twisted strip into a state k = 0, one 
needs to cut the strip. There is no continuous deformation that transforms 
one strip into another if the two have different k's. The energy needed to cut 
the ribbon, Fcut - US/a2, is much higher than the stored twist energy 
FtWist - k 2 ~ s / ~ ;  here L is the length of the strip, S is its cross-sectional area, 
and K - U/a is some elastic constant of the order of the intermolecular 
energy; a is the molecular scale. Transitions between the states with different 
k's are prohibited by high-energy barriers. 

The allowed values of k are defined by the inner symmetry of the strip. 
For example, if the edges of the strip are different, e.g., marked by a thin line 
and a thick line, Figure 5.6(c), then only integer k's (2~-twists) are allowed. 

The quantity k does not change under any continuous transformation and 
is a useful invariant to label topologically different states. Left and right 
twists can be distinguished by the sign of k. Obviously, one can create a pair 
of left and right twists without cutting the strip, Figure 5.6(d); what matters 
is the total sum of k's, which should be preserved. Therefore, topological 
charges k's obey a conservation law. 

"Topological twists" considered above obey the following rules, that 
generalize to all types of topologically stable configurations: 

(1) defect types are related to the type of ordering of the system; 
(2) defects are characterized by quantized invariants (topological charges) 

such as k; and 
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FIGURE 5.7. Disclination line with a n- 
twist of the director field. 

(3) merger and decay of the defects are described as certain operations 
(e.g., additions) applied to their charges; conservation laws of topologi- 
cal charges control the results of merger and decay. The topological 
invariant k's form groups. 

The topological stability of twisted strips is similar to that of topological 
solitons; the issue of a singular core is not involved. However, one can draw 
a parallel between the twisted strips and singular defects, too. Imagine a 
circle around a n-disclination in a uniaxial nematic liquid crystal, Figure 5.7. 
The set of molecules centered in this circle form a Mobius strip with k = i. 
After going once around the circle, the director n flips into -n, whlch is 
possible, since the nematic bulk is centrosymmetric, n - -n. The number k 
would remain equal to 4 whether the radius of the circle is taken larger or 
smaller, Figure 5.7. Thus the overall director configuration can be charac- 
terized by k = 4 (k is often called the "strength" of the disclination). At the 
disclination core, one faces the singularity: when the circle shrinks into a 
point, there is an infinity of director orientations at this point. This rule of 
exact transformation n + -n does not change if the nematic is replaced by a 
cholesteric. 

5.4.2 DNA Loops 
Twisted strips with different k's are of relevance to the problem of configu- 
ration and replication of double-stranded DNA molecules. Two strands 
are arranged in a helicoid fashion in which a 2n-twist occurs per every 10.5 
base pairs. In many organisms ranging from viruses and prokaryotes to 
some eukaryotes, DNA molecules form closed loops. Topologically, these 
loops remind us of a twisted strip with two distinctive edges, carrying a spe- 
cial integer Lk, referred to as the linking number of the two edges. It is an 
algebraic (i.e., accounting for the direction) number that shows how many 
times one (line) edge crosses a surface spanning the other (line) edge [3 11. Lk 
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is peserved in any conformational change of the DNA molecule that does 
not break the strands. If Lk is close to Lko = l / p  ( I  is the total DNA length, 
and p w 3.4 is the helix pitch), the DNA ring is elastically relaxed and can lie 
flat on a planar surface without contortion. Often Lk # Lko: the ends of the 
relaxed linear DNA duplex might be additionally twisted (or untwisted) by 
some number of rotations +2n before forming the ring. There are two ways 
of dealing with the induced strain. First, the number of base pairs per pitch 
can be changed; the ring remains planar and the linking number is equal to 
the number of turns of one strand around another. In that case, Lk = k, the 
topological twist defined above. Second, the duplex axis can twist upon itself, 
leaving the number of pairs per pitch unaffected. Such a supertwisted DNA is 
no longer planar and coils in three dimensions, like a buckled twisted ribbon. 
Whatever the case, while k and Lk stay unaffected, and are still equal 
integral numbers of a topological nature, the global geometry (and conse- 
quently the energy of the "twisted" ribbon and the way it relaxes) depends 
on the elasticity properties of the molecule and is better described by two 
geometrical parameters: the (so-called) twist Tw and the writlie Wr. The twist 
can be written as 

where Q(s) is the rate of wrapping of either strand about the duplex axis (the 
angle of rotation of the base pairs the per unit length of the strand). This 
quantity can be defined equally for an open strip; Tw can take any value and 
we can refer to it as the geometrical twist. However, if the duplex axis is 
planar, one gets Lk = Tw = k. The writhe Wr of a curve C is a much more 
subtle quantity. Introduced by Fuller [32], it is the number of averaged self- 
crossings (with sign) of the planar orthogonal projections of C (closed or 
not); in the DNA context it describes the buckling of the duplex axis, so to 
speak. Like Tw, Wr can take any value. We have the important relation 

with Lk (for two oriented curves C and C') and Wr (for an oriented curve C) 
given by double integrals: 

Lk = - 

(5.16) 

.[ds x ds*] .  

Here C is the duplex axis, say, and C' is any one of the strands. Wr vanishes 
when C is planar. Applications of these mathematical concepts to the elas- 
ticity of DNA can be found in [33]. 

To separate the DNA strands during replication, one needs to change the 
number Lk. It can be done directly by topoisomerases that cut one or both 



130 O.D. Lavrentovich and M. Kleman 

strands. In other cases, the replication occurs through local binding of the 
DNA molecule to proteins that creates zones of negative and positive 
supertwisting; for more details, see [34]. 

5.5 Line Defects-Disclinations and Dislocations 

Generally, the order parameter of an ordered medium is a function of 
coordinates, $(r). Distortions of $(r) can be of two types: those containing 
singularities and those without singularities. At singularities, $ is not defined. 
For a three-dimensional (3D) medium, the singular regions might be zero- 
dimensional (points), one-dimensional (lines), or two-dimensional (walls). 
These are the defects. Whenever a nonhomogeneous state cannot be elimi- 
nated by continuous variations of the order parameter (i.e., one cannot 
arrive at the homogeneous state), it is called topologically stable, or simply a 
topological defect. If the inhomogeneous state does not contain singularities, 
but nevertheless is not deformable continuously into a homogeneous state, 
one says that the system contains a topological configtlration (or soliton). The 
twisted wedge geometry considered in Section 5.2.1 is topologically trivial 
and equivalent to a uniform nematic. In contrast, point defects in droplets or 
defects involved in the formation of blue phases and twist grain boundary 
phases are topologically stable. 

The topological classification of line defects in ordered media is based on 
the concepts of the order parameter (OP) space % and homotopy groups of 
the OP space [35]-[38]. Line defects are described by the so-called first (or 
fundamental) homotopy group z ,  ('3). Topological invariants labeling dif- 
ferent defect lines are elements (or classes of elements) of zl(%). Point de- 
fects are described by the second homotopy group z2(%). This group is 
trivial for cholesterics, so that there is no topological point defect. Below we 
consider only line defects. We start with a uniaxial nematic, for which the 
predictions of topological classification are rather simple (the results can be 
applied to a weakly deformed cholesteric, such as a 90" twisted nematic cell). 

5.5.1 Disclinations in the Uniaxial Nematic 
The OP space % is the manifold of all possible values of the OP that do not 
alter the thermodynamical potentials of the system. The energy of conden- 
sation Fcond takes a minimum value on %. For a uniaxial nematic, the OP 
space is i sphere of unit radius: any point on the sphere corresponds to a 
different orientation of the director n. Furthermore, since n r -n, any two 
diametrically opposite points on the sphere describe not just energetically 
equivalent states, but rather indistinguishable states. The unit sphere with 
identified antipodal points is denoted s 2 / z z ;  it is the OP space of a uniaxial 
nematic. 

Suppose that the nematic is deformed so that the director becomes a 
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FIGURE 5.8. Continuous transformation of a disclination k = $ into a disclination 
k = - $ in real space (director configurations above) and the corresponding transfor- 
mation of contours in the OP space S2/Z2 .  

function of the coordinates. The function n(r) maps the points r occupied by 
a sample in real space into the OP space. In the classification of line defects, 
the mappings of interest are those of oriented contours encircling defects in 
real space. For example, in Figure 5.8, the contour yl12 is mapped into the 
contour rIl2 in the OP space. 

The mapping n(r) of a closed contour in real space produces in the OP 
space s2/z2 a contour which belongs necessarily to one of the following 
classes: either (a) a closed loop, or (b) a contour that connects two diamet- 
rically opposite points; this contour is closed because the two end points are 
identical. The contours of type (a) can shrink into a point; they correspond 
to disclinations of integer strength k which are topologically unstable and 
can be smoothly transformed into a uniform state through the well-known 
process [39], 1401 that R.B. Meyer called "escape in the third dimension" 
[40]. The contours of type (b) are not contractible to a point under any con- 
tinuous deformations, since the ends of the contours have to remain fixed at 
diametrically opposite points. These contours correspond to disclinations of 
half-integer strength k. 

It is easy to see that all the contours corresponding to half-integer k's can 
be smoothly transformed one into another, Figure 5.8. The classes (a) and 
(b) of contours form a group Z2 of two elements, say, 0 and 4. The group 
operation laws are simply + 0 = f and + f = 0. The group of closed con- 
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tours is called a fundamental group of the OP space and denoted zl(%). For 
a uniaxial nematic 

ZI (s2/22) = 22, (5.17) 

which means that there is only one type of topologically stable line 
disclination. 

On one hand, each element of the homotopy group corresponds to a class 
of topologically stable defects; all defects belonging to the same class are 
equivalent to one another under continuous deformations. On the other 
hand, the elements of homotopy groups are topological invariants, or topo- 
logical charges of the defects. The defect-free state corresponds to a unit 
element of the homotopy group and to a zero topological charge. There is 
no possibility of transforming a configuration from one class into a configu- 
ration from another class: transformations 4 H 0 are prohibited by (infinitely) 
high energy barriers. In contrast, transformations 3 + 3 H 0 are topologically 
possible; whether they happen or not depends on energies that are of the 
order of disclination energy or smaller. 

Let us now consider how the chiral asymmetry changes the classification. 

5.5.2 Disclinations in the Cholesteric Phase 
Additional interactions, such as dielectric coupling to the electric field, sur- 
face anchoring, biaxial or chiral interactions, with energy ht < Fcond, 
change the OP space from % to some % at which the sum of energies 
Fcond + fint is minimum. % is a submanifold of % [37]. Chiral asymmetry of 
the molecules leads to the transition from a nematic state with % = s2/z2 
which cames all the possible rotations of a unique director, to a cholesteric 
state with % which cames all the possible rotations of a set of three mutually 
perpendicular directors. To comply with the terminology of Friedel and 
KlCman [41], we will denote these directors A (which shows the local direc- 
tion defined by the molecule), x (along the helical axis), and T = A x X. 
The OP space is the group G = SO(3) of rotations of the trihedron A, X, T, 
factored by the four-element point group D2 of z rotations about the direc- 
tions 5 X, and T: 

% = SO(3)/D2. (5.18) 

The same result can be obtained for biaxial nematics [42]: from a topological 
point of view, the classifications of defects in cholesterics and biaxial nem- 
atics are identical. Calculation of the fundamental group for @ = S0(3)/D2 
requires knowledge beyond the scope of this chapter. We simply present the 
result (for details, see [2], [37], [42]): 

Q is the group of quaternion units which consists of eight elements 
{I, J, i, -i, j, - j, t ,  - t )  that obey the multiplication rules: 
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FIGURE 5.9. Closed contours (a) and (b), (c) r2 corresponding to Ikl = 1 and 
(k( = 2 disclinations in the OP space of the cholesteric. Both contours connect 
diametrically opposite and equivalent points at the surface of SO(3). TI cannot 
continuously shrink into a point. r2 runs between the two antipodal points twice (b) 
and can smoothly leave these points and shrink into a point (c). 

i j  = - j i  = t, j t  = - t j  = i ti = -it = j ,  

JJ = I ,  ii = jj = tt = J ,  i j t  = J .  (5.20) 

The multiplication rules dictate how the disclinations merge, split, and 
transform. Note that the group operation is noncommutative, i.e., Q is a 
non-Abelian group. Because of this, each disclinatioil in a cholesteric is 
characterized not by an element of the fundamental group but by a class of 
conjugate elements of Q. There are five conjugacy classes: Co = { I ) ,  
Co = {J), CL = {i, -i), C, = {j ,  - j) ,  and C, = { t ,  -t). Correspondingly, 
the topological charge acquires the values 1; - 1; (i, -i); ( j ,  - j) ,  ( t ,  -t). 

Classes CA, C,, and C, correspond to n rotations of directors when one 
goes once around the disclination's core; for example, CA relates to rotations 
of x and t (A remains nonsingular). Class Co corresponds to 2n rotations; 
unlike their nematic counterparts, these lines are topologically stable. Class 
Co describes topologically unstable 4n disclinations. 

The striking difference between 2n (stable) and 4n (unstable) lines is illus- 
trated in Figure 5.9. The difference between 2n and n (both stable) lines can 
be illustrated by the following example [43] with x lines (no singularity in the 
x field). Suppose the x line is perpendicular to equidistant cholesteric layers. 
The OP space for the nematic director is then S1/Z2, which implies an infi- 
nite number of topologically distinct x lines with integer and half-integer 
k. When one approaches the core region of the line, the elastic energy 
-K(v~)*  increases, until at distances -p it becomes comparable to the en- 
ergy difference -KIP2 between the cholesteric and nematic states. At scales 
smaller than -p, the OP space of the nematic director reverts to S2/z2. 

Therefore, the 2n lines with integer k should have a thick core of typical 
diameter -p that is nonsingular from the nematic point of view: the director 
is uniform (escaped in third dimension) inside the cylinder of diameter -p. 
In contrast, n lines with half-integer k are singular both for the uniaxial 
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TABLE 5.1. Multiplication rules of five classes of elements of the group Q that 
control the merger and splitting of disclinations in a cholesteric phase. 

nematic and cholesteric OPs. Interestingly, the n lines with half-integer k can 
be further shown to be nonsingular if one allows for biaxiality of the nematic 
phase and compares the gradient energies at the core to the energy difference. 
between the uniaxial and biaxial states [44]. As a result, in typical thermo- 
tropic materials, the core of n lines can be about an order of magnitude 
wider than the molecular length [44]. 

The multiplication rules (5.20) are specific of the classes of elements, 
rather than the elements themselves. The results are given in Table 5.1, that 
can be used to predict the result of merger or splitting of disclinations. 

If two disclinations from two different classes merge, the resulting dis- 
clination belongs to the class of the product of the first two. The merger of 
disclinations of the same class from the set Cn, CT, Cx is ambiguous: the 
result is either a trivial configuration (class CO) or a disclination from class 
co ,  depending on the path of merger with respect to other defect lines in the 
system [37]. 

The energy of disclination strongly depends on how the trihedron A, X, t is 
distorted. In a uniaxial cholesteric, the three have different physical meaning 
and different distortion energy. Only II is a real director while t the x are 
"immaterial" directors; singularities CT and Cx would be generally more 
costly than Cn. 

The difference is seen when the disclinations of half-integer strength 
k = n + (n is an integer) are compared. The so-called II disclinations in 
whlch the director II is not singular are apparently less energetically costly 
than t disclinations in which II is singular. The core of II disclinations is of 
radius p ("thick" lines), Figure 5.10(a), (b), (d), while the core of t dis- 
clinations ("thin" lines) is of molecular size (or somehow larger, as discussed 
above), Figure 5.10(c). The line tensions thus differ by an amount -K ln(p/a), 
where a is of the order of 1-10 molecular sizes. If the cholesteric is unwound 
into a nematic phase, p --+ a, then 1 disclinations vanish. A II- (where the 
superscript "-" indicates that the line is of negative strength k = - 4) can be 
annihilated by a collapse with a i f ,  Figure 5.10(b). Figure 5.10(c) pictures a 
s f ,  i.e., a wedge line of strength k = $, singular for the ,y and II fields but 
continuous for the t field. x lines will be discussed in the next subsection, 
since they can be treated as dislocations in the system of cholesteric layers. 
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FIGURE 5.10. Disclinations L and r in a cholesteric. 

The disclinations of integer strength belong to two different classes: those 
of odd strength k = 2n + 1 and those of even strength k = 2n. As already 
mentioned, the disclinations k = 2n + 1 cannot be eliminated; the escape of 
the director into the third dimension is restricted by a region of size -p. As is 
clear from Figure 5.10(d), the ?, line with k = 1 cannot be made continuous 
for the two fields t and x simultaneously. If, say, the z field is made contin- 
uous, then the x field remains singular. In contrast, k = 2n lines do escape in 
the third dimension, Figure 5.9. The distribution of A, z, and x disclinations 
of different strength among the five classes of the quaternion group Q is 
summarized in Table 5.2. 

The topological classification prohibits transformations of disclinations 
from one class to another. For example, z(n + i), R(n + i),  and ~ ( n  + i )  
cannot be continuously transformed one into another, despite the apparent 
similarity in the value of the "strength." On the other hand, different lines 
can be transformed by splitting. For example, according to Table 5.1 and 
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(5.20), a C, line can split into a pair of Cn and C, lines, if it saves elastic 
energy. An example of such a splitting (of x lines into IT pairs) will be dis- 
cussed in the next Section 5.5.3. There is no violation of the law of conserva- 
tion for the strength k in all these process6s since k is not a conserved topo- 
logical invariant, but just a useful label to distinguish different configurations. 

One should bear in mind that the topological classification of defects in 
cholesteric and other layered media such as smectics and ordinary crystals 
is limited by the condition of the layers equidistance. As a result, some 
transformations between defects that belong to the same class require very 
high energy barriers comparable to the energy barriers between different 
classes. Transformation A+ o A- within the class CA represents such an 
example. 

Disclinations A and T are often observed in fingerprint textures. Since the 
line tension of the A lines (with a nonsingular core of size -p) is smaller than 
the line tension of the singular s lines by an amount -K ln(p/a), one would 
expect that I defects are more frequent. However, this analysis might be 
altered if the cholesteric phase is biaxial: then all three directors might have 
the same energy weight. Livolant [45] has extensively studied disclinations in 
the cholesteric textures of three helical biological polymers: DNA, PBG, and 
xanthan: the A lines were quite frequent, while isolated s lines have never 
been observed. On the other hand, the T disclinations often appear in pairs 
with A disclinations to replace x disclinations. 

5.5.3 Dislocations 
The symmetry of rotations nn around the x-axis in cholesterics is equivalent 
to the symmetry of translations n ( p / 2 ) ~ .  Therefore, the x disclinations can 
be equivalently treated as dislocations [lo], [46], with the Burgers vector 

The values of the Burgers vector are included in Table 5.2. Figure 5.11 (a) 
pictures a X+ wedge disclination (x is continuous). It can be constructed by a 
Volterra process performed along the line, by opening the cut surface by an 
angle n: each cholesteric layer yields a two-dimensional k = configuration 
that rotates helically along the line with a pitch p. 

The equivalence just demonstrated for screw dislocations versus wedge x 
disclinations can be extended to edge dislocations (Figure 5.12) versus twist 
x disclinations and even further, to mixed dislocations and disclinations, for 
the simple reason that the two corresponding Volterra processes are the 
same. 

An important property of x dislocations is their ability to split into com- 
binations of I and s disclinations. Of course, these transformations must 
obey the multiplication rules (5.23). For example, a x line from the class C, 
can split into a pair of A and t lines (classes Cn and C,, respectively). An 
example is shown in Figure 5.11(b), (c): the core splits into a A- and t+ 
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FIGURE 5.1 1. Equivalence in the presentation of x lines: (a) wedge X+ disclination = 
screw dislocation; (b) ?twist disclination = edge dislocation; and (c) splitting of the 
core of a dislocation into a pair of disclinations. 

separated by a distance p /4 ;  the Burgers vector is b = p / 2 ,  i.e., twice the 
distance of pairing. Figure 5.12 shows a split dislocation with b = p.  

Splitting of a dislocation into two disclinations of strength Ikl = $, i.e., of 
rotation +n, relates to the fact that the product of two opposite n rotations 
along two parallel axes 112 and -112 (11121 = 1) at a distance d is a translation 

Therefore, two n disclinations of opposite signs L(Q) and L'(-Q) are alto- 
gether equivalent to a dislocation L(b); the "core" of the dislocation extends 
over L and L'. 

Splitting of x disclination lines has been observed in the so-called "Cano" 
wedges: one of the disclinations is always a A, i.e., it does not carry any ma- 
terial singularity. The first dislocations near the center of the wedge have a 
small Burgers vector (b = p/2), while b increases for dislocations far from 
the center. 

When the cholesteric layers are tilted with respect to the bounding plate, 
the disclinations might occur to match the twisted structure in the bulk with 
an (usually unidirectional or conical) orientational field of anchoring forces 
[47]-[49]. Here again, the x dislocations split into 1. and r pairs. The 1, lines 
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FIGURE 5.12. Confocal-microscope image of a dislocation b = p in the "fingerprint" 
cholesteric texture. The confocal microscope technique allows one to obtain the 
image of the director pattern not only (a) in the plane of the sample but (b), (c) in the 
vertical cross-section as well (photo D. Voloschenko). 

are in the bulk while the z lines are at the surface (which reduces their 
energy). 

5.5.4 Entanglement of Disclinations 
One of the most spectacular consequences of noncommutativity of the group 
Q is the possibility of a topological entanglement of the disclinations. Origi- 
nally, the problem was considered by Toulouse for biaxial nematics [42], but 
it applies to any medium with a non-Abelian fundamental group [50]-[52]. 

Figure 5.13(a) shows two entangled disclinations. The question is whether 
they can be transformed by continuous variations of the directors into an 
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FIGURE 5.13. (a) Entanglement of disclinations in a medium with a trihedron of 
vectors as the order parameter; (b) topologically trivial; and (c) nontrivial. 

(4 ' (el 
FIGURE 5.14. Continuous deformations of the contour y3 from Figure 5.13 into the 
product contour y,y2y;'yy1 demonstrating that the image T3 of y3 in OP space is 
homotopic to the product r,r2r;'r;'. At step (d), one pinches together four 
points marked by circles. 
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unlinked configuration, Figure 5.13(b), if we require that the ends of the 
disclinations remain fixed. 

To find the answer let us draw three contours y l ,  y2, and y3 from a point 
M of real space: y, and y2 encircle the defect lines and y3 encircles the en- 
tangled region, Figure 5.13. Their images in OP space will be some contours 
r l ,  T2, and r3. Evidently the defects can be unlinked only when r3 is ho- 
motopic to zero. If this is not so, then separation of the disclinations will 
leave a topologically nontrivial trace in space, a third disclination, Figure 
5.13(c). The result depends on the nature of the linked disclinations. One 
can show, Figure 5.14, that the contour r3 is homotopic to the product 
T 1 ~ 2 ~ ; 1 ~ ; 1 ;  an element of this form is called a commutator in the funda- 
mental homotopy group. For Abelian groups the commutator is the identity 
element, since r1r2 = r 2 r 1 .  This is not true for non-Abelian groups; in 
particular, for the group Q the contour T3 can belong either to the class Co 
(T~T~T;'T;' = 1) or to the class Co (T~T~T;'T;' = -1). The latter situa- 
tion occurs when the two entangled disclinations belong to different classes 
from the set Cn, C,, C,. Therefore, after pulling two different disclinations 
Ik( = across one another, they prove to be connected by a disclination 
IkJ = 1 belonging to Co. 

5.6 Effects of Confinement 

Topological defects are often needed to equilibrate an ordered system. There 
are two different possibilities here. First, the defects can occur to relieve in- 
trinsic ("bulk") frustrations (for instance, between the twist and layered 
structures in TGB phases). Second, the defects can occur simply because the 
system is bounded or because there are foreign inclusions, such as colloidal 
particles or droplets in a liquid-crystalline host. 

Surface interactions (the phenomenon known as anchoring) change the 
OP space. One can imagine, for example, a cholesteric bounded by a flat wall 
that imposes strictly normal director orientation. No uniform cholesteric 
structure of type (5.1) can satisfy this boundary condition; resulting dis- 
tortions might involve defects. However, this is not the case we have in mind. 
What we have in mind is that topological defects must appear in the equi- 
librium state when the bounding surface has a nonzero Euler characteristic. 
Similar analysis can be performed for particles of different topology dis- 
persed in the liquid crystal matrix. The condition for this topological con- 
sideration to be valid is that the characteristic size of the liquid-crystal 
system or the dispersed droplet is larger than the anchoring extrapolation 
length, as will be discussed later. 

Suppose a two-dimensional vector field n is defined on a closed surface 
with Euler characteristic E. This field might contain point defects whose 
topological charges are defined as 
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where I is a natural parameter defined along the loop enclosing the defect 
point on the surface. Number k shows how many times n rotates by an angle 
271 when one moves around the defect once. 

The Poincari theorem states that the sum of all charges k of the field n, 
defined at a closed surface, is equal to the Euler characteristic of the sur- 
face 

J 

For a sphere, E = 2; thus the two point defects at the poles of the nematic 
droplets in Figure 5.3 illustrate the Poincark theorem; it does not matter if 
the interior structure is twisted or not. 

Suppose now that the vector field is three-dimensional. There might 
be point defects in this field as well. A topological characteristic can be 
introduced as a number N which counts how many times one meets all 
possible spatial orientations of the vector field while moving around a closed 
surface surrounding the point defect. Analytically [53]: 

where the coordinates u and v  are specified at the surface enclosing the 
defect. If the vector field is parametrized as n(u, v )  = {sin Bcos y,; sin B sin y,; 
cos B), where both polar B and azimuthal y, angles are functions of u and v, 
then 

For example, for a radial hedgehog n = r in spherical coordinates 

The Gauss theorem states that if the three-dimensional vector field is nor- 
mal to the closed surface of Euler characteristic E, then the sum of all point 
defects inside the bounded volume is 

- i 

i.e., 1 in the case of a sphere. 
Both the Poincare and Gauss theorems can be applied to structures in 

cholesteric droplets provided that the surface anchoring is sufficiently strong. 
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FIGURE 5.15. Cholesteric textures in spherical droplets with tangential director an- 
choring at the boundary. Top: A monopole configuration with a point defect N = 1 
in the field of normals to the cholesteric layers and an attached nonsingular line 
k = 2, stable when R / p  >> 1 (microphotograph in crossed polarizers). Bottom: A 
boojum configuration with an isolated k = 2 surface point defect a t  R l p  - 1 (no 
crossed polarizers). The insert shows the director field at  the surface of the droplet. 

That is definitely the case when the radius R of the droplet is much larger 
than the anchoring length K /  W, where W is the anchoring coefficient (work 
per unit area needed to deviate the director from the anchoring direction by 
an angle, say, 1 rad). The reason is that the typical value of the anchoring 
energy (resp. the bulk elastic energy) is WR* (resp. KR): the surface energy 
ovenveighs the bulk elastic energy for large R. If R >> p, cholesteric droplets 
&splay a monopole-type structure first observed by Robinson and explained 
by Frank and Price, see [54] and Figures 5.15 and 5.16. The cholesteric lay- 
ers form a concentric system of spheres. The field x of normals to the layers 
form a radial point-defect hedgehog with N = 1 in the center, as dictated by 
(5.28). This point defect cannot be isolated, however: according to (5.24), 
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FIGURE 5.16. Configuration of layers in monopole structures with (a) one k = 2 or (b) 
two k = 1 disclinations; (c) boojum obtains from the monopole when the line defect 
shrinks into a point at the boundary. 

each cholesteric layer must contain a point defect in the orthogonal fields 2 
and T. These point defects form a radial line. There might be one disclination 
of class Co with k = 2 or two disclinations of class co with k = 1 [55]-[59]. 
The overall structure is reminiscent of the Dirac monopole [60], an elemen- 
tary magnetic charge that carries a point defect of the magnetic field, Bl(r, 
with an attached line singularity in the vector-potential A. The vector- 
potential A is normal to B and is thus specified on the concentric spheres 
around the point, which again brings (5.24) into action and leads to the line 
singularity in A. 

The example above shows that the isolated point defects are not likely to 
occur in the bulk of cholesteric phase when L l p  >> 1. This is indeed a general 
statement, valid for any ordered medium, such as superfluid 3He-A, smectic 
C, or biaxial nematic with a trihedron of vectors as the order parameter: the 
second homotopy group for the OP space of these media is trivial. However, 
point defects at the boundary of the cholesteric volumes and all the media 
listed above are formally allowed by the homotopy theory. 

The point defect at a surface of an ordered medium can represent either 
the end of a line that is topologically stable in the bulk or a true surface point 
defect with no bulk singularity attached [61]. In cholesteric liquid crystals, all 
points with IkJ = i;  1 are the ends of bulk disclinations. Only when (kl = 2 
(4n rotations of the director field), the point defect might be an isolated sur- 
face singularity. However, even in this case one should take care of the 
requirement of the layers equidistance. For example, the classical boojum 
configuration cannot be observed in a cholesteric vessel when L l p  >> 1. 

The boojum has been introduced by Mermin [62] for superfluid 3He-A as a 
way of reducing the energy of the monopole. In the 3He-A spherical volume, 
the energy of a monopole decreases when the line shrinks into a point at the 
surface; this point is the boojum. However, in the cholesteric phase, such a 
transformation violates the equidistance between the layers. As a result, 
the monopole structure remains stable, at least when R l p  >> 1. Only when 
R l p  - 1, can the isolated point defect with 4n rotations of the director field 
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be observed. Figure 5.15 shows how the cholesteric monopole is replaced by 
a boojum when the pitch increases [6], [55]. 

Cholesteric droplets have been extensively studied during the last decade, 
especially after Crooker and Yang suggested to use polymer-dispersed 
cholesteric liquid crystals for reflective color displays [63]. Lavrentovich and 
Nastishin [64], [65] reported on an intriguing phenomenon: liquid crystal 
droplets dispersed in an isotropic matrix (glycerin with lecithin) divided into 
smaller ones when one decreases the temperature of the sample, and passes 
from the cholesteric to the smectic A phase through the TGB phase. The 
reader is referred to the recent reviews [66]-[68], and to the contribution of 
Crawford, SvenSek, and Zumer in this book for more details about dispersed 
liquid crystals. 

Much less is known about the inverted systems, in which the liquid crystal 
serves as a host to foreign particles, say, spherical silica particles or water 
droplets. The topological consideration above can be applied to these 
systems as well, as soon as the dispersed particles are large enough for the 
surface anchoring to set a well-defined director orientation at the particle 
surface. Since each spherical particle is a seed of a nonzero Euler chara- 
cteristic (E = 2), the topological defects are intrinsic to these systems and 
define many important physical features, such as stability against coagu- 
lations observed for isotropic droplets in the nematic host [69]. 

5.7 Nonsingular Configurations and Solitons 

The concept of OP space helps us to analyze complicated configurations of 
the cholesteric order parameter even when these configurations are topolog- 
ically trivial, i.e., equivalent to an undistorted cholesteric or nematic. 

Suppose the cholesteric is confined between two homeotropic plates sepa- 
rated by a distance L - p. The magnetic field acts along the normal h to the 
plates. If the field is sufficiently strong, or the sample is sufficiently thin, the 
cholesteric is in the homeotropic nematic state with the director n = +h; 
the OP space is reduced to a single point. When the field decreases, the bal- 
ance of diamagnetic, elastic, and surface anchoring energies result in compli- 
cated configurations such as "spherulites" and "fingers" [70]-1741. Inside, the 
cholesteric twists; at the boundary of the configuration, the director adopts a 
homeotropic orientation in order to match the surrounding matrix, Figure 
5.17(a). Usually, this twist is nonsingular (although some types of config- 
urations might contain line 1751 or point [76] singularities). If L l p  -- 1, a 
convenient way to analyze both the geometry and energetic stability of con- 
figurations is to map the director field onto the sphere s2 [71]. For example, 
the double-twisted director field of the finger in Figure 5.17(a) is represented 
by a lobe on s2 in Figure 5.17(b). Clearly, the lobe can shrink into a point, 
say, the north pole of s2; thus the finger is equivalent to the uniform state 
n = f h. Any other configuration (even with topological singularities such as 
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FIGURE 5.17 Computer-generated cross-section of a cholesteric "finger" in a cell with 
finite surface anchoring and magnetic field: director configuration (a) in the real space 
and (b) on the sphere S2 (courtesy S.V. Shiyanovskii). 
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FIGURE 5.18. Twist wall as a planar soliton; director field in (a) the real space and (b) 
the OP space. 

a pair of radial and hyperbolic hedgehogs described by Pirkl et al. [76] for 
spherulites) that appears from the homeotropic state, should have an image 
on s2 that is shrinkable into a point. Of course, when the field is weak, the 
gain in the twist energy prevents the lobe from shrinking. 

Fingers, spherulites, and core structures of the disclinations considered in 
Section 5.2 have the following common feature: the OP space looks different 
at different scales. This feature is characteristic of topological solitons that 
are described by relative homotopy groups [77], [43]. To illustrate the issue, 
consider first a twisted wall in a nematic cell with tangential boundary con- 
ditions subjected to a strong horizontal magnetic field, Figure 5.18(a). The 
wall might terminate on a disclination line, or, if the line is moved to the 
sample's boundary on the left, run along the entire sample. 

Consider the mapping of the line y, threaded through the wall into the OP 
space. The ends of the line are mapped into antipodal identical points 
n = +h, while the line y, itself is mapped onto the closed contour I?, linking 
these points in the OP space. This contour cannot be contracted to a point 
by any continuous transformations, as long as the end points are fixed. 
Therefore, the deformed (but nonsingular) configuration is stable. The width 
of the wall is fixed by the balance of elastic, anchoring, and field energies. 
Such a structure is called a topological soliton. A soliton of the planar type 
just described can be closed into a loop or terminate at disclinations. Alter- 
natively, a disclination loop (or a pair of disclinations) can nucleate in the 
plane of the soliton and destroy the wall. 

In the general case, the classes of homotopic mappings of the line y 
threaded through a planar soliton form the relative homotopy group 
nl(%, '%), where '% is the OP space far from the core of the soliton, shrunk 
(as compared to the complete OP space 3) by additional interactions (ex- 
ternal field, boundary conditions, etc.). If '% consists of a single point, as 
in Figure 5.18, nl(%, '%) coincides with the fundamental group nl(%) [77], 
[781. 

Just as a disclination in an external field can give rise to a planar soliton, a 
point defect can give rise to a linear soliton. Linear solitons are described by 
the classes of mappings of the surface a crossing the soliton into the OP 
spaces % and %, i.e., by the elements of the second relative group n2(%, 3). 
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As already discussed, there are no isolated point defects in the cholesteric 
phase, n2(% = S 0 ( 3 ) / D 2 )  = 0. However, singular point defects can serve as 
the ends of linear solitons, as in the case of the monopole structure, in which 
the nonsingular disclinations can be considered as linear solitons. 

The most interesting case is presented by the so-called particle solitons. 
The distribution of the OP in particle-like solitons depends on all three co- 
ordinates. They are described by the group n3(%, 3) of homotopy classes of 
the mappings of the three-dimensional spherical volume D~ containing the 
soliton into the OP space %. Here the boundary of the spherical volume, the 
sphere a,  is mapped into the shrunk space 3. If '% consists of one point, then 
the particle-like soliton is described by the group n3(%). The spherical vol- 
ume D3 with all points of its surface a being equivalent, is homotopic to a 
three-dimensional sphere S3 in a four-dimensional space. Thus the elements 
of n3(%) are the mappings S3 --r %. The special cases S 3  + s2 and S3 -+ 

s 2 / Z 2  are called Hopf mappings, Figure 5.19, and correspond to n 3 ( S 2 )  = 
n 3 ( s 2 / z 2 )  = n 3 ( S 0 ( 3 ) / D 2 )  = Z ,  where Z is the group of integers; classifi- 
cation for the cholesteric and nematic phases is the same. 

In a uniaxial nematic, the particle-like soliton amounts to a director con- 
figuration distorted in a region of finite size, outside of which the director 
field is uniform. As a rule, such solitons are unstable with respect to a 
decrease in size and subsequent disappearance on scales smaller than the 

FIGURE 5.19. A nontrivial Hopf texture in a three-dimensional vector field, as seen 
in the vertical cross-section. The vector field is directed north everywhere outside 
the sphere and at the origin. The vertical axis is the rotational symmetry axis. When 
going along any radius from the-center to the surface of the sphere, the vector rotates 
by an angle 2nrlR around this radius. The length of the arrows is proportional to the 
length of the vector projection in the XY plane. 
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coherence length 5. The decrease in size L + Lp ( p  < 1) entails an increase 
in the elastic-energy density by a factor of l / p2  and a decrease in the volume 
of the soliton by a factor of p3, SO that the total elastic energy decreases: 
F + Fp. Stabilization of particle-like solitons can be facilitated by an 
additional interaction, in particular, by helical twisting of the structure [79]. 
In a weakly twisted cholesteric mixture Bouligand. [80], [El.] observed two 
linked disclination rings kl = k2 = 1, each of which, by itself, is topologi- 
cally unstable, whereby all points of the cores of the disclination are mapped 
into a single point of s2 /Z2 .  In going from one ring to the other, the director 
undergoes a z rotation and one can represent the rings as inverse images of 
two diametrically opposite points on s2. Evidently one cannot convert the 
configuration into a homogeneous state because the rings are linked: upon 
trying to unlink the rings, they must intersect one another and singularities 
would arise in the configuration. The degree of linking of the rings, equal in 
this case to unity, coincides with the Hopf invariant, which is an element of 
the group z3(S2/Z2) = Z.  The stability of the configuration as a whole is 
guaranteed by the conservation of the Hopf invariant [8 11. 

5.8 Effects of the Layer Structure 

As already mentioned, the layered structure of cholesteric materials imposes 
certain limitations on the topological classification of defects based on ho- 
motopy groups; a more general theory is still lacking. In this section we dis- 
cuss macroscopic defects such as focal conic domains and oily streaks whose 
existence depends crucially on the layered character of ordering. 

5.8.1 Focal Conic Domains 
In the regime L /p  >> 1, the elastic theory considers the cholesteric medium 
as a system of equidistant (and thus parallel) layers and that the curvature 
distortions are predominant, (5.8). The description of defects such as edge 
dislocations, oily streaks, and focal conic domains in cholesterics is often 
based on the results obtained for "simpler" layered medium, namely, the 
smectic A phase. 

The liquid crystal samples are always bounded, so the surface interactions 
prescribe a certain orientation of the cholesteric layers (most often, the layers 
align parallel to the bounding surface). Generally, the two requirements 
(surface orientation and the equidistance of layers) can be satisfied simulta- 
neously only when the layers are bent in a very special manner. As was 
established by G. Friedel and Grandjean, originally for smectic A phases 
[82], [83], all the parallel layers should take the shape of "Dupin cyclides." 
According to Dupin (see, e.g., Darboux [84]), in such a case the two focal 
surfaces of the layers are degenerate into lines, which are confocal conics 
(e.g., an ellipse and a hyperbola; or a circle and a straight line; or two pa- 
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FIGURE 5.20. Focal conic domain with a circular base smoothly embedded in the set 
of horizontal flat layers. The layers are equidistant everywhere except in the vicinity 
of the circle and the confocal straight line. 

rabolas). The restricted part of space filled with a single family of Dupin 
cyclides is called a focal conic domain (FCD). Figure 5.20 shows a particu- 
lar type of toroidal FCD-a circle and a straight line as focal lines (for more 
details, see [2], [85]). The layered structure inside the FCD exactly matches 
the planar configuration of the layers outside. 

Although the FCDs involve three-dimensional distortions, the elastic en- 
ergy of an FCD scales linearly with the characteristic size -KL (e.g., the size 
of the elliptical or circular base). When an FCD has its base on the bounding 
surface, it effectively changes the surface orientation of cholesteric layers: in 
most experimental situations, the layers are perpendicular to the boundary 
inside the base, while outside they are parallel. When the surface does not 
favor the planar orientation of layers, the appearance of FCDs with size 
L > L* = K/ (y I I  - y I )  is energetically justified [86]: every domain saves sur- 
face energy (yII - y l ) ~ 2  at the expense of elastic energy KL. Recent atomic 
force examination of FCDs in cholesteric oligomers by Meister et al. [87] 
reveals smooth matching between layers tilted at the free surface of the 
sample (inside the FCDs) and flat layers in the bulk that are parallel to the 
interface (outside the FCDs). Focal conic textures and their transformations 
under applied electric field, studied for smectic layered systems 1881, [89], are 
used in bistable cholesteric reflective displays [90]. 

The SMLC cholesterics most frequently present polygonal textures with 
domains of a negative Gaussian curvature. In these domains the focal con- 
ditions are not exactly satisfied [91], and unlike the situation in smectics, the 
cholesteric layers might deviate from the exact geometry of Dupin cyclides 
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by changing their thickness. In a cholesteric, it is possible to let the pitch 
vary by a large range at the sole expense of some energy of twist Kz. These 
polygonal textures are less frequent in bidpolymers in solution (DNA, poly- 
peptides, etc.) [45], because the twist energy is accompanied by a consider- 
able bend contribution K3, caused by the rigidity of the long molecules. We 
are not aware of any reports on FCDs with a positive Gaussian curvature in 
the bulk of cholesteric materials (although such domains are documented for 
lyotropic lamellar phases [92]). 

The most rigid cholesteric biopolymers have other types of layer textures, 
the monopole structures or Robinson spkertllites discussed in the previous 
section: the layers are approximately along concentric spheres (positive 
Gaussian curvature). An extensive study and review of cholesteric spherulites 
in materials of biological interest can be found in Bouligand and Livolant 
[571. 

5.8.2 Oily Streaks 
Oily streaks and liquid crystals were discovered simultaneously. In 1888, 
F. Reinitzer studied cholesterylbenzoate and noticed elongated "fluid" in- 
clusions in the cholesteric sample [93]. Oily streaks, as FCDs, are common 
for many lamellar liquid crystalls. In a flat cell with layers parallel to the 
bounding plates, oily streaks appear as long bands that divide the ideal do- 
mains of flat layers. Their inner structure is quite complicated and depends 
on many parameters, most notably on elastic constants [94] (including 
the saddle-splay elastic constant [95]) and surface anchoring. According to 
Friedel [83], oily streaks are made of pairs of edge dislocations of (large) 
opposite Burgers vectors nd, n'd, making a total Burgers vector b = 
(n - nl)d; here d is the characteristic interlamellae distance, such as the 
thickness of a smectic A layer or the half-pitch in cholesterics. Each element 
of the pair is most probably due to the coalescence of small Burger's vector 
dislocations of the same sign. A large Burgers vector dislocation b = nd can 
be favoured with respect to small Burgers vectors dislocations nid, 
Ci n, = n, produced when the sample is formed. The explanation is in the 
specific model of the dislocation core which is split into two disclinations of 
opposite signs, Figure 5.21(a); the splitting reduces the total elastic energy of 
the dislocation [94]. A further feature characteristic of oily streaks is the fre- 
quent occurrence of a transversal striation caused either by undulation of the 
layers or by the formation of FCD chains [95]. 

The simplest variety of oily streaks is shown in Figure 5.21(b): two parallel 
k = $ disclinations with a wall between them. The total Burgers vector is 
zero, so that the oily streak is topologically trivial and can disappear by 
pulling the semiround ends together. There is no transversal striation so that 
the Gaussian curvature is zero everywhere except at the end region (where it 
is negative). 

Since the line tension (the free energy per unit length) of the oily streaks is 
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(b) 

FIGURE 5.21. (a) Splitting of the core of a large Burgers vector dislocation into two 
disclinations; and (b) an oily streak with a semicircular end in a system of parallel and 
equidistant layers. 

normally positive, their networks coarsen with time. Zapotocky et al. [96] 
suggested stabilizing the networks of oily streaks by adding micron-size col- 
loidal particles to the cholesteric. The particles gather at the nodes of the 
network. The stabilized network of connected oily streaks greatly modifies 
the rheological properties of the system, making it gel-like. In contrast to a 
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FIGURE 5.22. Network of oily streaks in a cholesteric planar texture. Cell thickness 15 
pm, cholesteric pitch 0.48 pm. The oily streaks are (a) straight at zero voltage but 
(b) buckle when the voltage exceeds some threshold value. The short side of the field 
of view is 420 pnl. The narrow streaks do not buckle while the wide streaks start 
to buckle at voltages higher than the medium width streaks. 

defect-free cholesteric fluid that exhibits liquid-like rheology, the stabilized 
oily streaks exhibit macroscopic rubber-like elasticity 1961. 

Usually, the layers within the FCDs and oily streaks, and the layers out- 
side these defects, have different orientation at the sample's boundaries; thus 
the problems of surface anchoring and the layers' curvature in these defects 
are strongly connected. To illustrate the relationship. we briefly discuss an 
electric field instability that manifests itself as a buckling of oily streaks [97]. 
The electric field changes the line tension of oily streaks and can even drive it 
negative, in which case the oily streaks buckle and proliferate rather than 
coarsen. 

Figure 5.22(a) shows the network of connected oily streaks in a cholesteric 
sample when the electric field is absent. The bounding plates of the sample 
are treated to align the molecules parallel to the plates, so that the field x is 
normal to the bounding plates. The edges that separate the uniform domains 
are oily streaks, provoked by inhomogeneities such as plastic spacers that 
keep the binding glass plates apart. The width 20 of the oily streak is defined 
by the number of layers that undergo a TC turn. 

An electric field E is applied to transparent conducting I T 0  layers at the 
bounding plates and is thus normal to the cholesteric layers at the faces. The 
dielectric anisotropy of the cholesteric material (defined with respect to the 
helix axis X) is negative, E, < 0, so that the layers tend to reorient along E. 
One would expect expansion of the oily streaks since the layers are almost 
parallel to E inside the oily streak. The experiment, Figure 5.22(b), shows 
that the expansion takes place as an elongation and buckling of the streaks 
rather than as their widening: the field drives the line tension of oily streaks 
negative. 
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Although the phenomenon is similar in appearance to the buckling of 
dislocations in Cano wedges [98], [99], it cannot be understood solely as a 
dielectric response [99] of the cholesteric. The behavior of the oily streaks 
can be explained only if one adds a specific surface anchoring term with an 
amplitude W - K / p  to the standard energy density, comprised of the elastic 
teims (5.7) and the dielectric term - - E , ( x .  E)'. 

The anchoring term is caused by tilting the cholesteric layers at the boun- 
daries. The tilt angle increases from 0 outside the streak to Om, = arctan r 
at the vertical middle plane of the streak, see Figure 5.2 1 (b); < = 2a/h is the 
width of the streak renormalized by the cell thickness h. The anchoring 
penalty increases when 2a increases (since Om,, increases); this increase can 
be avoided if the oily streak simply elongates, preserving Omax = const. 

A quantitative analysis [97] with the model of the oily streak depicted in 
Figure 5.21 (b), shows that the elastic, dielectric, and anchoring contributions 
to the line tension F of the oily streak depend differently on t .  The elastic 
term is practically linear with < (the slowly changing logarithmic factor - In< can be neglected). The dielectric and anchoring energies scale as <' 
when 5 << I ,  but switch to a linear scaling - < when r >> 1. Thus narrow 
oily streaks are always dominated by the elastic energy and F > 0 for any 
applied voltage. Anchoring takes over at t >> 1 ,  so that the line tension of the 
wide streaks is also positive. For intermediate t - 1, when the field is higher 
than some threshold value Vth, the (negative) dielectric contribution out- 
balances both the elastic and anchoring terms and drives the line tension 
negative. The oily streak elongates, preserving the width that corresponds to 
the minimum of the curve F ( t )  in Figure 5.23, as in the experiment, Figure 
5.22(b). 

0 5 10 15 
Width Za, arbitr. units 

FIGURE 5.23. Line tension of the oily streak as a function of its width for different 
values of the applied field. Note that at high field only the streaks of intermediate 
width gain a negative line tension. 
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Note that a good quantitative agreement between the model and experi- 
ment can be obtained only when there is an "intrinsic" contribution W - 
K l p  to the anchoring coefficient. It comes from the layered structure of the 
cholesteric and has no analog in the nematic phase (but has a counterpart in 
smectics). The estimate W - K l p  is natural since the number of cholesteric 
layers crossing the boundary is of the order of Blp, and each layer has to 
be distorted (continuously or through dislocations) to accommodate the 
anchoring direction at the boundary. The energy of these distortions is - K 
per layer. Hence W - Klp.  

5.9 Conclusion 

The molecular chirality and tendency of many liquid crystalline phases (even 
composed of nonchiral molecules) to twist results in spectacular director 
configurations that often include topological defects and solitons. We cov- 
ered the very basic properties of deformations related to twisted structures; 
the considerations were restricted mainly to a uniaxial cholesteric phase in 
a static regime. Some of the areas where one can expect further exciting 
progress are listed below. 

Although the homotopy theory of classifying defects in condensed media 
had been developed more that 20 years ago, some theoretical aspects, such 
as direct inclusion of the large-scale equidistance of layers, can still be ad- 
vanced. Another field awaiting both theoretical and experimental effort is 
the hydrodynamics of chiral systems, especially in the presence of defects. 
Experimentally, some of the predictions of homotopy theory, such as the 
topological entanglement of disclinations in media with a director's trihe- 
dron as the order parameter, remain to be observed. Experimental studies of 
phases, in which the frustrations between layered (smectic-like) or hexagonal 
order and twist (or double-twist) deformations are resolved through topo- 
logical defects, are still in their infancy; major breakthroughs are expected for 
new liquid crystal materials composed of discotic molecules and polymers. 

Many cholesteric structures, especially in the regime L l p  - 1, are too 
sophisticated to be reconstructed by analytical analysis or by ordinary 
polarizing microscopy. Development of computer simulations and relatively 
new experimental techniques, such as confocal microscopy, promises fast 
progress in the deciphering of chiral configurations. With this background 
information, the research can further progress into the fascinating areas of 
new complex materials, in which the liquid crystal serves as the dispersed 
phase (as in the polymer-dispersed liquid crystals [67], [68]) or as the disper- 
sion medium, as in the example (961 with defect-stabilized cholesteric gels. 
Defects are topologically inherent in all liquid-crystal disperse systems that 
have internal surfaces, as discussed in Section 5.6. 

One could definitely expect a strengthening of the interplay between 
cholesteric liquid crystal and biological studies: chirality is one of the most 
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important features of living species. On a more immediate pragmatic side, 
studies of defects in cholesteric cells subjected to external fields will advance 
the design of reflective displays [go] and other devices such as "smart mirrors" 
[loo], or diffraction gratings with electrically controlled periodicity [loll. 
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