
Nematic Liquid Crystals: Defects 

There are two types of defects in the uniaxial nematic 

F phase: line defects (disclinations) and point defects 
(hedgehogs and boojums). These are reviewed at three 
levels: (i) experimental observations; (ii) topological 
classification; and (iii) curvature elasticity. The reader 
is referred to the textbooks on liquid crystals 
(Chandrasekhar 1992, de Gennes and Prost 1993), 
defects (Kltman 1983), and textures (Demus and 
Richter 1980) for more details. More specialized texts 
are those in the reviews by Bouligand (1981), 
Chandrasekhar and Ranganath (1986), Mermin 
(1979), Trebin (1982), Kurik and Lavrentovich (l988), 
and Kltman (1989). 

I .  Experimental Observations 

1.1 Flat Nematic Slabs 

When a thick nematic sample is viewed under a 
microscope, the disclinations are seen as thin and thick 
threads, Fig. 1. Thin threads strongly scatter light and 
show up as sharp lines. These are true disclinations, 
along which the nematic symmetry of rotation is 
broken. The disclinations are topologically stable in 
the sense that no continuous deformation can trans- 
form them into a state with the uniform director field, 
n(r) = constant. Thin disclinations are singular in that 
sense that the director, that is the degeneracy par- 

Figure I 
Thin (marked by white arrows) and thick (black arrows) 
threads in the nematic (n-pentylcyanobiphenyl (5CB)) 
bulk. Crossed polarizers. 

ameter or phase of the order parameter of the nematic 
phase, is not defined along the line. Thick threads are 
line defects only in appearance, they are not singular 
disclinations. The director is smoothly curved and well 
defined everywhere; it can be, at least in principle, 
transformed into a uniform state n(r) = constant; the 
obstacles might be imposed by the conditions at the 
walls of the sample or by other defects. 

In thin nematic samples (1-50pm), the threads are 
often perpendicular to the bounding plates. Under a 
polarizing microscope, the threads show up as centers 
with emanating dark brushes, giving rise to the so- 
called Schlieren texture, Fig. 2. The dark brushes 
display the areas where the director n is either in the 
plane of polarization of light or in the perpendicular 
plane. There are usually two types of centers: with two 
and four dark brushes. They correspond to the thin 
and thick threads, respectively. 

The centers with two dark bands have a sharp 
(singular) core, insofar as can be seen, of submicro- 
meter dimensions and correspond to the ends of 
singular stable disclinations. The director rotates by 
an angle f a  when one goes around such a center. The 
presence of centers with two brushes signals that the 
director is parallel to the bounding plates: the in-plane 
f a rotation brings the director into its equivalent 
state. 

The centers with four brushes correspond to isolated 
ppint defects. The director undergoes a f 2a rotation 
around the center. One can observe the difference 
between the two-brushes and four-brushes centers by 
gently shifting one of the bounding plates, Fig. 3. 
Upon separation in the plane of observation, the 
centers with two brushes leave a clear singular trace- 
disclination, while the centers with four brushes do 
not. 

On rare occasions, centers with numbers of brushes 
higher than four are encountered. These observations 
signal some peculiarity of the nematic material 
(Madhusudana and Pratibha 1983) or of the boundary 
conditions (Lavrentovich and Pergamenshchik 1995). 

The intensity of linearly polarized light coming 
through a uniform uniaxial slab depends on the angle 
/I between the polarization direction and the optical 
axis (which is n), projected onto the plane of the slab 
(see, e.g., Hartshorne and Stuart 1970): 

where I,, is the intensity of incident light, 1 is the 
wavelength of light, n,,,,, is the effective refractive 
index that depends on the ordinary index no, extra- 
ordinary index n,, and the director orientation. 
Equation (1) allows one to relate the number Ikl of 
director rotations by f 2a around the defect core, to 
the number B of brushes. Since Eqn. (1) predicts that 
any two in-plane director orientations that differ by 
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Figure 2 
Schlieren texture of a thin (23pm) slab of 5CB. Centers 
with two and four brushes are marked by white and black 
arrows, respectively. Director is in the plane of the sample. 
Crossed polarizers. 

&n/2 result in the same intensity of transmitted light, 
then 

Equation (2) is valid only when the rate of the 
director rotation does not change sign. In some 
textures, especially when the centers show more than 
four brushes, this restriction is not satisfied and there 
is no simple relationship between Ikl and B. 

The number Ikl is an important characteristic of a 
line defect. Taken with a sign that specifies the 
direction of rotation, k is called the strength of 
disclination, and is related to a more general concept 
of a topological charge (but does not coincide with it). 

1.2 Nematic Droplets 

When left intact, textures with defects in flat samples 
relax into a more or less uniform state. Disclinations 
with positive and negative k attract each other and 
annihilate. However, there are situations when the 

equilibrium state requires topological defects. Nematic 
dro~lets  sus~ended in an isotro~ic matrix such as 
glycerin, water, polymer, etl'. (Drzaic 1995, 
Lavrentovich 1998), and inverted systems, such as 
water droplets in a nematic matrix (Poulin et al. 1997) 
are the most evident examples. 

Consider a spherical nematic droplet of a radius R 
and the balance of the surface anchoring energy W,R2 
(the coefficient is called the surface anchoring energy), - 

and the elastic energy, KR; K is some averaged 
Frank elastic constant. Small droplets with R << 
K/W, avoid spatial variations of n at the expense 
of violated boundary conditions. In contrast, large 
droplets, R 9 K/ W,, satisfy boundary conditions by 
aligning n along the preferred direction(s) at the 
surface. Since the surface is a sphere, the result is 
the distorted director in the bulk, for example, a 
radial hedgehog when the surface orientation is 
normal, Fig. 4. The characteristic radius R, = K/ W, 
is macroscopic (microns), since K -  10-I1N and 
W, - 10-6-10-6Jm-2. 

2. Topological Classification 

The language of topology, or more precisely, of 
homotopy theory, allows one to associate the charac- 
ter of ordering of a medium and the types of defects 
arising in it, to find the laws of decay, merger, and 
crossing of defects, to trace out their behavior during 
phase transitions, etc. (Toulouse and Kleman 1976, 
Volovik and Mineyev 1977). The key point is occupied 
by the concept of topological invariant, also called a 
topological charge, which is inherent in every defect. 
The stability of the defect is guaranteed by the 
conservation of its charge. Homotopy classification of 
defects includes three steps. 

First, one defines the order parameter (OP) of the 
system. In a nonuniform state, the OP is a function of 
coordinates. 

Second, one determines the OP (or degeneracy) 
space R, i.e., the manifold of all possible values of the 
OP that do not alter the thermodynamic potentials of 
the system. In the uniaxial nematic, R is a sphere 
denoted S/Z, with pairs of diametrically opposite 
points being identical. Every point of S/Z, represents 
a particular orientation of n. Since n = -n, any two 
diametrically opposite points at S / Z ,  describe the 
same state. 

The function n(r) maps the points of the nematic 
volume into S / Z , .  The mappings of interest are those 
of i-dimensional "spheres" enclosing defects. A line 
defect is enclosed by a loop, i = 1; a point defect is 
enclosed by a sphere, i = 2, etc. 

Third, one defines the homotopy groups n,(R). The 
elements of these groups are mappings of i- 
dimensional spheres enclosing the defect in real space 
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Figure 3 
Shift of the upper cover plate allows one to visualize the 
difference between the centers with two dark brushes and 
four dark brushes: the former are the ends of singular 
lines-disclinations, while the latter are true point defects. 

Figure 4 
Polarizing-microscope texture of spherical nematic 
droplets suspended in glycerin doped with lecithin. The 
director configuration is radial and normal to the spherical 
surface. The insert shows the point defect-hedgehog in the 
center of the droplet as observed in nonpolarized light. 

into the OP space. To classify the defects of dimension- 
ality t' in a t-dimensional medium, one has to know the 
homotopy group n,(R) with i = t - t' - 1. 

On the one hand, each element of n,(R) corresponds 
to a class of topologically stable defects; all these 
defects are equivalent to one another under continuous 
deformations. On the other hand, the elements of 
homotopy groups are topological charges of the 

defects. The defect-free state corresponds to a unit 
element of the homotopy group and to zero topo- 
logical charge. 

As an example, consider a disclination in Fig. 5 (on the 
left) and verify its topological stability. Let us sur- 
round the line by a loop y that does not approach the 
singular region too closely (the safe distance is usually 
a few molecular lengths), so that n is well defined at 
every point along y. The function n(r) maps y into 
some closed contour r on ,912,. r might be of two 
types: (i) it starts and terminates at  the same point (for 
example, a circle); (ii) it connects two diametrically 
opposite points of S / Z , .  Contours (i) can be con- 
tinuously contracted into a single point. The cor- 
responding director field becomes uniform, n(r) = 
constant. Contours (ii) cannot be contracted: their 
ends remain the ends of a diameter of S /Z , .  Such a 
stable contour is shown in Fig. 5. The corresponding 
defect line is topologically stable. The homotopy 
group n,(SZ/Z,) = Z2 = (0, f )  is composed of two 
elements with the addition rules :++ = 0 and ++O = + describing interaction of disclinations. 

Thus there is only one class (with the topological 
invariant labeled above as f ;  in principle, one can 
chose any other number) of topologically stable 
disclinations seen in microscope as thin threads. 
Transformation between the classes f and 0 (thick 
threads) is energetically impossible as it requires 
destruction of the nematic order a t  the whole half- 
plane ending at the line. On the other hand, all the 
stable lines can be continuously transformed one into 
another, as illustrated in Fig. 5. Although the disclin- 
ations shown on the left and on the right in Fig. 5 are 
usually assigned different strengths, k = +and k = -+, 
the difference between them is in energy rather than in 
topology. 

2.2 Point Defects-Hedgehogs 

The simplest point defect is a radial hedgehog, Fig. 4. 
Generally, to elucidate the stability of a point defect, 
one encloses it by a closed surface (e.g., a sphere) a. 
The function n(r) maps o into some surface in the OP 
space. If this surface can be contracted to a single 
point, the point defect is topologically unstable. If it is 
wrapped N times around the sphere S/Z2,, the point 
singularity is a stable defect with a topologcal charge 
N. Since n =  -n, each point defect can be equally 
labeled by N a n d  -N. 

2.3 Point Defects-Boojums 

Boojums are special point defects that, in contrast to 
hedgehogs, can exist only at the boundary of the 
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Figure 5 
Stable disclinations in uniaxial nematic and corresponding 
contours in the order parameter space. 

medium (Volovik 1978). In addition to the integer N, 
boojums can be characterized by a two-dimensional 
topological charge k of the unit vector field t projected 
by the director onto the boundary. 

Point defects (both hedgehogs and boojums) in 
large systems such as nematic droplets with 
R %= K/ W,, must satisfy restrictions that have their 
roots in the Poicare and Gauss theorems of differential 
geometry: 

E 2 k, = E and C N, = - 
I 1 2 

(3) 

Here E is the Euler characteristic of boundary. For a 
sphere E = 2 and for a torus E = 0. Figure 4 illustrates 
the simplest example with N = 212 = 1. 

3. Energetics of Defects 

The relative stability of stable disclinations depends on 
the Frank elastic constants of splay (K,,), twist (K,,), 
bend (K,,) and saddle-splay (K,S in the Frank-Oseen 
elastic free energy density functional; the role of the 
elastic constant K,, in the structure of defects is not 
clarified yet. 

Frank (1958) considered planar disclinations with n 
perpendicular to the line. In this case, the K2,-term in 
the line's energy is zero. In the approximation K,, = 
K,, = K,, = K, the equilibrium director configuration 
around the line writes 

n = {cos(ky, + c), sin(ky, + c),O) (4) 

where y, = tan-'Cylx), x and y are Cartesian coordin- 
ates normal to the line, c is a constant; and another 
constant k is the familiar integer or semi-integer 
number, the strength of disclination, that shows the 
number of rotations of the director around the line. 

The energy per unit length (line tension) of a planar 
disclination is 

L 
F,, = aKk2 In -+ Fc 

rc  
(5) 

where L is the characteristic size of the system, r, and 
Fc are respectively the radius and the energy of the 
disclination core, a region in which the distortions are 
too strong to be described by a phenomenological 
theory. 

The Frank theory does not distinguish lines of 
integer and semi-integer strength, except for the fact 
that the lines with (kl = 1 tend to split into pairs of 
lines (kl = 112, which reduces the energy, according to 
Eqn (5). The lines of integer k, as already discussed, 
are fundamentally unstable. Imagine a circular cyl- 
inder with normal orientation of n at the boundaries, 
Fig. 6(a). The planar disclination would have a radial- 
like director field normal to the axis of the cylinder, k 
= 1. However, the director can be reoriented along the 
axis. This "escape in the third dimension," is en- 
ergetically favorable, since the energy of the escaped 
configuration is only 3nK (Cladis and Klkman 1972, 
Meyer 1973). When opposite directions of the escape 
meet, a point defect-hedgehog is formed, Fig. 6(b). 
Anisimov and Dzyaloshinskii 1972 showed that, in 
additional to planar lines, bulk disclinations can exist, 
in which the director does not lie in a single plane. 

Unlike point defects such as vacancies in solids, 
topological point defects in nematics cause distur- 
bances over the whole volume. The curvature energy 
of the point defect is proportional to the size R of the 
system. For example, 

and 

for the radial hedgehog with n = 
(x, y, z)/l/x2+ y2 +z2, and the h erbolic hedgehog 
with n = (- x, - y. z ) l \ / m Y !  respectively. 

There are still many open questions Eoncerning the 
behavior of defects in shear flows, external fields, and 
their dynamics and interaction. Note that the classifi- 
cation of defects in biaxial nematics is drastically 
different from that in the uniaxial nematics considered 
above. In the biaxial nematics, there are no hedgehogs 
(although boojums are allowed), and there are five 
topological classes of disclinations (Toulouse 1977). It 
turns out that both (k( = n/2 and (k( = n are stable 
disclinations; those with (k( = 2n are not; here n is an 
integer. Some pairs of disclinations cannot cross each 
other without creation of a third disclination that joins 
the original pair. Other distinctive features are 
expected in energetics: since the line tension scales as 
k2, singular lines Ikl = n should tend to split into lines 
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(a) (b) 

Figure 6 
Singular disclination of strength k = 1 in a cylindrical 
capillary (a) escapes in the third dimension creating point 
defect-hedgehogs (b). 

(k! = n/2. Both topology and energetics of disclin- 
atlons might actually help to clarify the status of 
biaxial nematics. 
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