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Undulations in a confined lamellar system with surface anchoring
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We visualize undulations in layered systems using a cholesteric stripe phase with a macroscopic suprami-
cron periodicity. The wave vector of stripe pattern is in the cell’s plane. The undulation is induced by an
in-plane magnetic field normal to the stripes. The observed displacement of layers is much larger than the value
predicted by the Helfrich-Hurault classic theory. We propose a model of undulations that explains the data by

finite surface anchoring of layers.
DOI: 10.1103/PhysReVvE.63.030501
I. INTRODUCTION

A variety of condensed phases possess reduced ong:
dimensional(1D) (smecti¢ or 2D (columnar phasedrans-

PACS nunider61.30—-v

IIl. EXPERIMENT

The model system with an undulating stripe pattern is
eated in two step<i) obtaining a uniform cholesteric fin-
gerprint texturd 16]; (i) generation of undulations by a mag-

lational order that allows long-range curvature deformationsqtic field in the plane of the cell.

(splay in smectic, bend in columnar phasgs|. Curvature

(i) The cell is assembled from a pair of glass plates coated

deformations are capable of rglaxing dilation or f_ield—induceq,\,ith transparenflTO) electrodes and an alignment material
stress. In many systentsmecticA [2,3], cholesterid4] and  JALS 214 (Japan Synthetic Rubbethat sets homeotropic
columnar(5,6] liquid crystals, diblock copolymer7,8], pe-  boundary conditions. Two mylar strips are placed between
riodic patterns in ferrofluid$9], and ferrimagnet$10,11,  the glass plates parallel to each other, separated by a dis-
etc), the dilation-curvature coupling shows up as the undutancea=1.7 mm in the plane of the cell. The mylar films
lation instability, often also called buckling or Helfrich- fix the distancel=(15.7-16) um (=~P) between the
Hurault effec{12]. The mechanism of the phenomenon is asglass plates(along they axis in Fig. 1 and serve as
follows. The lamellar phase is confined between two flat‘walls” for the uniform fingerprint texture of the cholesteric
plates; the layers are parallel to these plates. The magnetiiquid crystal filling the gap between the glass plates
field is applied normally to the plates and tends to reoriengnd the mylar strips. We used the cholesteric mixture of
the layers. If there were no bounding plates, the layers would-n-pentyl -4’ cyanobiphenyl(5CB) and 4-(2-methylbutyl)
uniformly tilt and realign along the field. In reality, the sur- —1—cyanobiphenyl (CB15 in weight proportion
face anchoring at the plates does not allow the adjacent lay29.07:0.93. Uniform orientation of the cholesteric stripes
ers to rotate freely. As a result, the layers undulate with th®arallel to the mylar stripgthex axis in Fig. 1 is achieved in
tilt angle changing sign periodically in the plane of the cell. WO steps. First, an electric field is applied to the indium tin
Undulations can be caused by other means, e.g., by mechaffxide (ITO) electrodes to unwind the cholesteric helix, and

cal tension[1]. The classic Helfrich-Hurault theory of the
phenomenori1,12] and all subsequent modificatiof$3—

15] assume that the undulations vanish at the cell boundaries
i.e., the layers are clamped by an infinitely strong surface
anchoring.

To determine the actual pattern of layers displacements
and to verify the predictions of the theory we design a “uni-
form fingerprint” cholesteric texture as the model of undu-
lating lamellar structure. The cholesteric pitch is large
enough P~15 um) to visualize the layers under a polariz-
ing microscope, but small as compared to the characteristic
radius of distortions. The last feature allows us to treat the
cholesteric phase as a 1D periodic lamellar phase within the
Lubensky—de Gennes coarse-grained mofdgl Experi-
ments reveal that the layers displacements are much large
than one would expect from the classic Helfrich-Hurault
theory and do not vanish at the bounding surfaces. We refine
the theory by adding a finite surface anchoring term to the
free energy functional; soft anchoring explains why the dis-
placements are larger than in the Helfrich-Hurault model.
Fitting of the experimental data allows us to determine the
strength of the surface anchoring.
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. 1. Geometry of a sample.
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FIG. 2. Experimental setup.

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 63 030501R)

FIG. 4. Undulation pattern near the mylar watl € 1.09H,).

i.e., the functionug(H/H.) depends only on one material
parameter, the elastic lengit= K/B defined by the ratio
of the curvature constait to the compression moduliBsof
the stripe phase; the threshold field

then it is switched off to allow the cholesteric fingers to grow

parallel to the magnetic field acting along tkeaxis. The
stipe periodicityw=16.5 um is close toP (and not toP/2;
see[17]).

27K
a)\|Xa|

c

(if) Once the stripes are grown, the magnetic field is apdepends also on the diamagnetic anisotrggyof the mate-

plied in the directionz perpendicularto the cholesteric
stripes to cause undulations along thaxis; see Fig. 2. The

rial. The experimental datayg(H/H_;) can be approximated
by Eqg. (1) only when\=(8.5+1.7) um. On the other hand,

number of layers remains constant. The field was raised withccording to the Lubensky—de Gennes thedtys 3K /8
the increment of 0.05 T and kept constant until the systenand B~ (27/w)?K,, so that with the known bend,

shows no signs of evolution=(1 hr).

Ill. RESULTS AND DISCUSSION

Figure 3 shows the field dependence of the displaceme
amplitudeu, (along thez axig) of the layer initially in the
middle of the cellz=0. According to the classic theory, just
above the threshold field . [18],
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~10 N and twistK,~0.3x10 !N elastic constants of
5CB [19], one expects much smaller length=2.9 um. In-
trigued by the discrepancy, we measukeddependently, by
r“tting the profile of an elementary dislocation, as described
in [16], and found that for our systen=(2.9+0.1) um, i.e.,

\ is indeed too small to allow Ed1) to describe the data in
Fig. 3. Thus, the most plausible source of discrepancies be-
tween the experiment and the theory is the form of &jg.
itself.

Equation(1) was derived in the approximation that the
layers displacement is strictly zero at the boundarie$2].
Closer examination of the undulations reveals that the dis-
placement is actually nonzero, Fig. 4. Below we refine the
theory by taking into account the finite surface anchoring at
the walls.

The free energy of the system, assumed periodic along the
x-direction, u(x) ~sing,x, writes (per one period z/q,) as

27/qy a2 2

[
0 X—a/zzz
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FIG. 3. Comparison of the measured displacement amplitudg\’here the su_rface term ‘év'_th the agChO“”Q coeffiq‘e.\hts
with the theory. Dotted line shows, predicted by the classical taken proportional todeu)“= (du/dx)“[1]. Itis a legitimate
theory, Eq.(1). The measured displacement falls between the twoASsumption since the tiit,u of layers is small and changes

lines, Eq.(9) with =2.5 and 3.5. With the valug=0.44 J/ni

sign periodically along the axis. A coherent tilt withd,u

estimated from the coarse-grained theory, the upper and the lower const would require a lattice of dislocation and a surface

curves correspond t&/=2.2 and 2.4 10~ 8 J/n?, respectively.

term ~|d,ul.
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UNDULATIONS IN A CONFINED LAMELLAR SYSTEM. ..

We first deriveH . and the undulation wavelength2q,.
at H.; for these calculations, the fourth order termurin
Eqg. (2) can be disregardefil2]. We relax the condition

RAPID COMMUNICATIONS

PHYSICAL REVIEW E63 030501R)

The coefficientn in Eq. (9) depends on\, a, and W/B
[through the dependencies @f @, and 8 on q,., which are
the functions ofW/B, see Eqg5), (7)]. A good fit of the data

u(z==a/2)=0 and solve the Euler-Lagrange equation within Fig. 3 is obtained fory=(3.0+0.5), and measured inde-

boundary conditions following from Ed2). This yields the
standard solution

U(X,Z) =UqgC0Sq,Z SiNQyX, 3
with constraints on the wave vectayg andq,,
0= Ak — N2, (4)
B qycotag/x—r%q2/2)
wo =9(0a), ©)

w V= N2ay

where k=|x,/H?/B. The functiong(q,) is even ing, with

two minima. When the abscissa of the two minimaBidV,

the coordinates of the minima areq,.. Minimization of
a(q,) gives the conditionc,= ()\za/a)q)z(c, which allows us
to find the critical field

\%aB
z (6)

~ afxa e

He

and the relationship betweey. andq,. from Eqg. (4),

, G [B
qxc_T E'
/2

For W—o, Egs. (5)—(7) recover the results of the classic
theory[1,12]: H.=2wK/a\|xa|, 92.= 7/a\, andq,= 7/a.

()

sing,a
qZCa

pendently\=2.9 um anda=1.7 mm in Eq.(9).

The fitted values of » correspond toW/B=(5.2
+0.3) um, which is of the order of the characteristic length
of the cholesteric phase. The correspondence is established
in the following way. First, we chose some value \fB,
and obtain the corresponding numerical valuesQf, q,c,

«a, B, andp from Egs.(5)—(7) and then calculatey from Eq.
(9) and compare it to the fitted valug=(3.0=0.5). Using
the coarse-grained value of the modulBs=K,(2m/w)?
~0.44 J/n§ and the resuliW/B=(5.2+0.3) um, we deter-
mine the anchoring strengthV=(2.3+0.1)x10 ¢ J/n?.
The value of W agrees in the order of magnitude with a
dimensional estimaté/~K,(27/w)=10"8 J/n? that treats
the surface anchoring as the “intrinsic” anchoring of a
lamellar system[20,21] caused by a violation of layers
equidistance near the surface. The same estimate
~K,(2m/w) follows from the studies of cholesteric oily
streaks[22]. Note also that the finitdV calculated above
reduces the threshold field. [see Eq.(6)] by a factor of
~0.8 as compared to its classical valué/ét-oo.

In summary, we have determined the pattern of displace-
ments in an undulating 1D periodic system, both in the bulk
and at the bounding surfaces. The displacement amplitude is
few times larger than the one predicted by the classic theory
[1,12]; it does not vanish at the boundaries. The pattern is
explained by taking into account that the anchoring energy
penalty for layers tilt is finite. Finite surface anchoring also
decreases the threshold of undulations. The model can be
applied to other undulating system to determine, for ex-
ample, the strength of surface anchoring for materials with
various elastic lengths.. Furthermore, the present study

In order to calculate the displacement immediately abovehould be extended from the immediate vicinity of the undu-

H., we retain the fourth order term in E(). With Eq. (3),
the energy density per one period of undulation reads

Gx _ 9alxal
2ma  4ha

3Kq.ap 4 )

ToF SRGap 4
1024%ga °

JaB{HZ—Hug+

where p=6aq,.+ 8 sing,a+sin 23, Minimization of Eq.
(8) yields the dependenag,(H) aboveH. Eq. (6),

1/2
8\ 7 1/2 ,8 3/4
- ( 1) v M= 0xc ol IR C)

H2

i

6Aa

Uoz
P

3 o

The last expression reduces to the Helfrich-Hurault result,

Eq. (1), =1, whenW—co (as easy to see by calculatipg
a, and B with q,.= m/a).

lation threshold to the region of high fieldstresses where

the weakness of the surface anchoring becomes even more
important. For example, our preliminary studies indicate that
atH=1.6H. the tilt of the layers at the boundaries becomes
practically equal to the tilt in the bulk, i.e., the approximation

of the infinite anchoring fails completely. Analytical treat-
ment of the high-stress region should take into account
higher harmonics of undulations, since the layers acquire a
saw-tooth profile.
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