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Crossing of disclinations in nematic slabs
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PACS. 61.30Jf - Defects in liquid crystals.

Abstract. - It is shown experimentally that crossing and intercommutation of disclinations in
a bounded nematic cell depend on surface orientation of the director and the relative strength
of disclinations. Lines of opposite strength switch the pinned ends between the bounding plates
and vanish independently of each other if the surface orientation is tangential. In contrast,
tilted surface orientation preserves the stability of lines.

Introduction. — A common issue of current interest in cosmology [1]-[3] and condensed-
matter physics [4]-[6] is the dynamics and interaction of topological defects. The prablem
is centered around the mechanisms of defect production during the transition into a broken-
symmetry state and subsequent phase ordering. In condensed-matter systems, an additional
point of interest is the defect-mediated mechanical properties of materials such as liquid
crystalline polymers [7]-[11]. One of the key processes in the evolution of a network of linear
defects is their crossing. Numerical simulation in both cosmology [12]-[14] and condensed-
matter systems [15], [16] demonstrated the process of reconnection: two initial lines exchange
parts as they cross so that each of the two ensuing lines has segments of the two original
strings. Even in nematic liquid crystals, where any two singular lines are supposed to annihilate
upon merger, one can observe this effect of reconnection. For example, as Chuang et al. [4]
demonstrated, if two topologically stable lines disclinations cross in the nematic bulk, the
result is a pair of two reconnected, but still topologically stable, lines.

So far both experimental [4), [17] ,[18] and theoretical [19], [20] studies of defect crossing
have concentrated on the bulk feature. In this letter we explore how the boundedness of the
system influences the result of crossing. The underlying idea is that the ensuing bulk lines can
transform into the surface lines. If this is so then the final result of crossing should depend on
the boundary conditions for the order parameter since the topological stability of defects in
the butk and at the boundary is generally different {21].

Ezperirnent. — 'The nematic liquid crystal 5CB {EM Industries, Inc.) was used in all
experiments at room temperature. Glass plates were spin-¢oated with dye-doped Polymethyl-
methacrylate (PMMA), supplied by IBM Almaden Research Center. Two coated plates of
lateral size about 1 cmx 1 cm were assembled to form a flat cell with a gap fixed by thin Mylar
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(DuPont Co.) films. Although the cell thickness was not an essential factor in the experiment,
it was optimized to 25 um for the observational clarity. The PMMA material possesses two
important features that make the experimental study of defect interaction possible.

First, the PMMA coating provides excellent azimuthally degenerated tangential orientation
of the director n so that the topologically stable disclinations of strength s = £1/2 are easy to
create (for example, by cooling the system down from the isotropic melt). Two dark brushes
emerge fromn the ends of disclinations terminating at the glass plates (so-called Schlieren
texture, fig. 1(a)). The brushes mark the regions where n is parallel either to the polarizer or
the analyzer. The two complementary mutually perpendicular states of n can be discriminated
by the use of a quartz edge. Rotation of the sample between the ¢rossed polarizer allows us
to veconstruct the whole director field around the lines and thus to establish their strength.

The second important feature is good adhesion of the ends of the disclinations to the
PMIMA substrates. The disclinations that connect the opposite plates remain stable against
approaching each other and in-plane annihilation. Under a gentle shift of the top plate the
corresponding ends of the lines follow the movement of the plate. This feature allowed us to
study the line crossing by rotating the upper plate of the cell. The plate was rotated in such
a manner that two initially vertical and parallel disclinations found themselves twisted in a
crossed position. The ends of the lines remained pinned at the substrates, the crossing thus
took place in the bulk of the cell.

We also prepared samples with spin-coated polyimide layers (Nissan Polyimide 610) that
provide an alternative surface alignment with titled n. The polyimide layers were left non-
rubbed to preserve azimuthal degeneracy. However, even nonrubbed polyimide has some
local anisotropy and the azimuthal degeneracy is preserved only when averaged over areas of
supramolecular size.

To check surface alignment, we measured the capacitance of the cells as the function of
the magnetic field applied parallel to the bounding plates. For PMMA cells, there was no
change in the capacitance as the field increased from 0 to 1 Tesla, indicating that PMMA does
indeed impose tangential anchoring. For the palyimide cell, there is a drop in the capacitance
value {5%). Since the dielectric anisotropy of 5CB is positive, this shows that the nonrubbed
polyimide provides tilted alignment with the angle between n and the substrate about 5°.
Strictly speaking, isolated disclinations that connect the opposite plates are impossible for
tilted n; the lines should be accompanied by surface walls. Across these walls, the director tilt
changes sign. Experiments reveal that such walls of weak optical contrast exist. However, for
small tilt, the energy cost of the walls is small and one can still identify |s} = 1 disclinations
and perform cross-linking.

The scenarios of interactions were recorded through a polarizing microscope with a CCD
camera.

Results. - Defect lines in nemmatic liguid crystals are characterized by a director rotation
angle 2sm measured as one goes counter-clockwise around the defect core [22], where the
strength s can be either integer or half-integer. Lines with an integer s are unstable: they can
be smoothly transformed into a uniform state s = 0. All lines with half-integer s are stable
and topologically equivalent to each other so that, for example, a line 5 = 1/2 can be smoothly
transformed into a line s = —1/2. Thus, there is only one type of stable nematic disclinations.
Despite the fact that the sign of s is topologically meaningless, it controls defect interactions
(repulsion of alike signs vs. attraction of opposite signs [22]). The results below demonstrate
that the sign of s also controls the crossing of disclinations. The scenario for the pair ( , —%
is different from the scenario for the pair (—3 , —1). :

Figure 1 shows the crossing scenario for the pair (5 , —%) in a tangentially anchored cell.
When the initial lines that connect the opposite plates (fig. 1(a)) are brought close in the
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Fig. 1. — The actual images (left column) and schematic pictures (right column) of the crossing and
reconnection in the case of 3 and —1 lines. Picture (a) was taken with crossed polarizers while (b)-(e)
were taken without them for clarity. Elapsed time measurement was started at (b). (a) Initial state of
the pair. One can identify the charges (—+—% , —%) by rotating the stage of the polarizing microscope.
(b) The top plate is shifted. The disclination lines are elongated but are not yet crossed (0 s). (c) The
two lines are crossed and form a junction (1.0 s). (d) After the reconnection, the two ensuing lines
have their ends on the same plates (1.5 s). (e) One of the ensuing lines (located on the top plate) has
disappeared due to the shortening, another shrinks and eventually disappears (3.0 s).

middle of the cell (fig. 1(b)), their central parts attract each other to form a joint segment
(fig. 1(c)). The joint segment disappears, leaving two reconnection cusps. Each resulting line
has both ends at the very same surface (fig. 1(d)), in contrast to the original geometry. As the
time elapses, the lines disappear independently of each other (fig. 1(e)). The end portions of
the line vanish because n reorients into a uniform state and the bulk portion shrinks. Hence
the crossing of lines in a tangentially anchored slab leads to their elimination at the bounding
surfaces.

The case of crossing of lines with the same signs (—% , —-;—) for the same tangentially
anchored cell is different. Although the attraction between the lines is not apparent, they also
form a point of merger. The disclinations exchange ends, but this time each ensuing line still
has two ends located at the opposite plates. Thus the final structure is identical to the original
one: two stable lines that connect the opposite plates.

Tilted boundary conditions change the result of intercommutation of the pairs (2 , —%)
Until the reconnection, the process is the same as in the PMMA cell with tangential orientation.
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Fig. 2. - Schematic director configurations for cressing of pairs (+3. -—g) (a) amd ( -3, —3) (b). Note
the difference in the winding pumbers in the muivally perpendicular paths m and ..

However, no shartening of the final lines is observed, instead the lines transform into siable
surface disclinations. Tho core width of Lhe surface disclination {few ums} is much wider than
the core of the bulk disclination.

Discussion

a) Direction of reconnection, — As stated above, the direction of reconnection
depends on the relative signs of s. The standard topological approach [3], [19], [20] is to consider
two mutually orthogonal planes, in our case, parallel to the bounding plates and perpendicular
to them, fig. 2. The closed loops v, and <, drawn in these two planes correspond to different
total winding numbers s.|. For the pair (,f—, , —% ) the contour 7, encloses a configuration with
sy} =0, while y; encloses a configuration with js;} = 1 (fig. 2 (a)). For the pair (—} , —3), the
situation Is uppuzite: “horizontal” v, corresponds to |#¢| = 1, while “vertical” -y, corresponds
to |s:| = 0 (fig. 2(b)). Comparing this with experiment, one concludes that the direction of
reconnection ig defined by |g|. The plane |s,| = O crosses no disclinations in the final state,
while the plane |s;| = 1 crosses the ensuing lines. In other words, the dissection occurs ia the
plane |s| = 0.

The difference between |s{ = 1 and |s,} = 0 i5 not topological though: these states
correspond to the same trivial element of the first homotopy group w1 (HP?) = Z; of the
nematic order parameter space which is the projective plane RP? (Z, is the group of two
integers). The fact that the dissection pever occurs in the plane {s| = 1 means that the
transformation of }s;| = 1 into |s] = 0 configuration is prevented by the energetics of the
director field. Such a transformation reorients n along the vertical z-axis (fig. 2(b)); this
process is hindered by tangential aliznment (n is in the z, y plane) and residual in-plane flow.

b) Switching ends and elimination of defects. - The elimination of
disclinations (} , —1) after crossing in the cell with tangential alignment is an interesting
consequence of different topological stability of defects in the bulk and at the surface [21].
Two initial lines connect the opposite plates and can annihilate only by approaching each
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other; pinning of the ends at the bounding surfaces prevemts this process if the lines are
sufficiently separated. In contrast, the lines that emerge after crossing have both their ends at
the very same surface. Depending on the director alignment at the surface, the surface parts
of these lines can become topologically unstable.

The stability of the surface disclinations is given by the relative homotopy group (R, K} [21]
where B = RP? and R is the order parameter space at the surface. For in-plane degenerate
alignment, X depends on the angle a between n and the normal to the syrface [23]:

-

g, a=0,
= m
R—js], I<ac< 3
St/ 23, a=g;

here §* is the circle and §/Z- is the circle with antipodal points identified. The group
m (RP?,8'/Z3) = 0 is trivial: no stable disclinations exist on the surface with tangentially
degenerate n. Whep a stable line |s| = % comes from the bulk, it disappears at such a
surface through director reorientation along the disclination core {i.e. “escapes in the third
dirension” [22]}.

In contrast, tilted boundary conditions preserve the stability of disclinations: with R = §7,
one has 7, {RP?,S!) — m (RP?) = Z, [23] and the surface disclinations are described by the
elements of the same group as the bulk diselinations. The only difference would be in the
structure and the energy of the core. The core radius I,, of the surface disclinations is defined
by the surface anchoring coeflicient W and the elastic constant K [24]: [, ~ 7’5— As a result,
1y is macroscopic, {, ~ 1-10pm and thus significantly larger than the core radius of the bulk
ling, r¢ ~ 10 nim {25]. Consequently, the energy of the surface line is smaller than the energy
of the bulk line by a factor ~ In(j*) [24].

Finally note another peculiarity of crossing related to the elastic energy. For tangential
alignment, the elastic energy before the crossing is due to the interaction between two discli-
nations $; and s3: Ui = w8182 K d]n(%), where « is the separation along the bounding plates
and d is the thickness of the eell and simultaneously the length of each line. The crossing
intercommutes not only the ends of the lines but also the characteristic lengths » and 4 and
the energy of each ensuing line, while in the bulk is Uy ~ wszK::ln(;d:). Thus Uy » Uin,
since ¥ >» d in the experiment. Although the pinning force can prevent the movement and
annihilation of the initial lines, it might be too weak to prevent the shortening of the bulk
segments of the lines after the crossing.

To conclude, we observed crossing and reconnection of disclinations in a bounded nematic
ceil. The result of crossing depends on the disclination strength and boundary conditions.
When two lines of opposite sign cross in a cell with tangential degenerate alignment, they
intercommute the ends and eventually both disappear at the bounding surface. This defect
elimination throvgh cross-linking can find practical applications as a tool to control the defect
densities in liquid erystal materials. Tilted boundary conditions preserve the topological
stability of the ensuing iines.
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