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Abstract Energetic stability of loop defects in nematic liquid crystal ib analyzed -- 

using Mori-Nakaniahi ansats and Rank-0s- theory with non-xrr, Kz4 divergence 
term. The ratio of the bulk and divergence &tic constantrr defines a churackrbtic 
material length, which is the equilibrium radius a* of the djscbnation ring. Positive 
Ka4 forces the ring to shrink. 

Nematic liquid .crystals show a rich variety of defects, including point ('hedgehog" 

or umonopolen) and line ("discIinationn) sing&tiesl. Important peculiarities of 

nematic defects are brought about by the identity -n n; u is the dircctor thai 

describes moleculm orient at ion. The identity makes it topologically for a 

monopole to transform into a disclinatiw ring of strength 1 /22-7. For a large vol- 

ume the stability of the hedgehog ve. loop should be d&ed by intrinsic nematic 

parameters such as Frank elastic constants. 

Mori and Nakanishi2 conaidered how the hedgehog vs. loop stability depends 

on the splay md bend elastic constants. In this article we analyze bow their results 

would be modifid by the divergence elastic ttrm K24. Although the Ka4 term does 

not change the bulk equiljbrium equations, it has to be taken into acwnnt when 

there arc Copologicd changes, such as transformali~n of the ipheical-like core of the 

hedgehog into a torus-like core of the disdination ring with a macroscopic radius 

much lager than the nematic coherence length ( . 
The Frank-Owen free elastic energy densityu 
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contains the standard contribution with elastic constant K (represented here in tbe 

one-constant approximation') as well as two divergence terms with constnnts KIJ and 

K2,. We consider only K21 term, assuming KI3 = 0. 

The status of the Kzl term as compared to that of the bulk K terms can be 

illustrated with an equilibrium radial hedgehog, n = i in spherical coordinates. To 

calc&te the energy of the hedgehog, one needs to integrate f over r, 5 F < R, w h u e  

R > ( is the radius of the system and r, - 4 iti the coxe radius of the defect; in the 

care, f do- not represent the true energy density. Both K and K24 mntributionn to 

the hedgehog's energy are linear in R: 

here Ecmh - K/€' is the hedgehog's core energy density with some effective elastic 

constant K - K. The r,-terms are negligible as against R-terms. Eq.(2) shows 

that K24 should profoundly influence the stability of ddecbe. The mechanism can be 

Uustrated by differentid geometry theoremsg. If n ia normal to a family of surfaces 

S, then the KzJl distortion is nothing else but twice the Gauss curvature G of S 

(G = n 1 m 2 ,  where and v2 are the two principal  curvature^)^: 

For the radial hedgehog G = l/rz, and one immediately obtains the KT4 energ  in 

Eq.(2). The appearance of a loop would mean that G in the region endored by the 

loop is reduced. For example, G = 0 on t be equatorial disc of radiue a. The difference 

in elastic energy between the ring and the hedgehog would be .v aKw, forcing the 

ring to expand if K24 < 0, and to shrink if K24 > 0. 

For the quantitative consideration, we follow the Mori-Nakanishi ansataZ of 

the disclination loop: n = (1,0,0) in ellipsoidal coordinates (&,+,&I connected to 

the Cartesian ones by x2  = a Z ( l  + u2)(1 - 7')  cosZ d; p2 = aZ(l + u2)(l - r2) sin2 4; 
a = aor. The ansatz asymptotically satisfies boundary conditions n = i and the 

eqdibrium condition VZn = 0 as R + ao. The limit a = 0 is the radial hedgehog 

which satisfies exactly the two conditions above. With a # 0, the ansatz describes 

a circular wedge loop of radius a with n perpendicular to the surface of the oblate 

ellipsoids of revolution (Fig.1). Since with a # 0 the ansatz satisfies the equilibrium 
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condition only asymptotically, the wrrmponding energy Fr, teptcsents the upper 

limit of minimum energy of the loop2. 

Fig.1 Loop of disclination 1/2 

To find the equilibrium radius a' of the loop, one has to find the integral Flw 

of f and then minimize it. Tht volume of integration should not include the tom- 

like care of the loop with metidiond radius - +,, where deformations art large. The 

ududGdmlmuccanbec6o~cnu~ 0 < o S p , O  5 Irl 5 q,vhcrcp= d- 
and p s d-. Any other geometry of the mrc crass-section chimges the 

en- by - %K, which H negligible in comparison with terms - a$ and Ilk, when 

a 3 r,; the last i n e q d t y  sets the l i d  t of validity oi our consideration. 

We fimt obtain the energy F2q caused by the divewnce term: 

As it w m  urpaetcd, the mre p, 9-terrae bring only small wmctions T,K~~, The leading 

terms (-8xKMR) and 2aZaKz4 art arc-profile-independent and do not vaniah even 

when r,/a 4 0, th& origin being purely topologicd, as discussed above. Of coprsc, 

. this topdogicd argument hold8 only for a > f when the region inside the ring is 

composed of uniaxial nematic phase. 

The total energy FL, of the Imp includes also the K-term and the core energy 

2raECJ where &,$ = EcE,s<'/K. In the limit rc/a + 0, 
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Within the framework of Frank- Oseen theory, r, should be estimated 86 r, - ( 
and its scaled energy as E,,r - 1'. Tha same order of GJ follows from the models 

of hiaxial core, where vC is larger but ECC is srndleP*'O.". Note that the usual b& 
terms produce divergent factor# such as Jl ln (a]~,). In contraat, Kz4 integral# bring -- 

no divergence, Eq.(4); the same behavior waa found for mnectic focal conic defect~'~. 

Thia brings rather strong exponential dependence of the loop radius on 

the ratio of elastic wnstantr. Minimixation of gives 

T h i ~  value of a* would be modified by the iadusion of different vatues of splay 

Kll and bend Km elagtic condant s. Tn the first approximation of small misotoropy 

a = (Kl1 - K33)/(K, I + K:v,:l) the factor is exp(1 f a), and thus K33 > KI1 favors a 

larger loop. 

Aa recent  experiment^'^-'-'^ and molecular theories16 suggest, K2,4 c m  be of the 

order of K . According to the Ericksen's stability criteria, Kz4 6hould be positive'7. 

Therefore ~e appenxauce of the loop insttad of the rodid hedgehog inmema the 

elastic energy. We conclude that with positive K2, , the macro~wpic loop is t d h l y  

to be stable as against a radial hedgehog: in &.(6), the radium of the Imp is the order 

of few tens of 4 when Kal = 0 ,  but quickly decreaacs to a* - E when K*4 -+ K + Of 

course, for as - 4 the Rank- Oseen approach gives only indicative resdts; a dgwoas 

treatment shuuld include t hc gradients of the d e p  of otder and psibi l i ty  of biaxial 

regions at the defect core. 

Thc Bitnation can be different for hyperbolic htdgehcgs, n = ( - z l r ,  -y / r ,  t / r ) ,  

r = y2 + z2.  It is easy to see that the elastic energy of the byperbdc hedgehog 

containa Ka4 term with a aign opposite to that of radial hedgehogs: 

The difference in the ~ i g n  of the Kz 1 term ia b a u a e  of predominantly negative 
' 

Gsuseian cumatace of surfacer normal to n ; for the radial hedgehog these ~ n r h e a  . 

are spheres with a podtiye curvature. l'ransfonnaiion of the by perbotic hedgehog into 

a loop of m = -1/2 and radius a should decrease the enera by a quantity .Y aK=. 

Therefore, the increase of a positive constant K24 would in- the radius oi the 
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loop, ra* - p(cxp(AKz4/K); here p - 10 and A -- 1 are the two positive numerical 

cotffi&nts with values that can be determined within the Rank-Oaeen approach. 

In nnmary, using the Mori-Nakanishi snsatr, we have shown that the saddle- 

splay elastic term in Frank-Oseen theory with a positive elastic constant KZ4 should 

force a loop m = 112 and large macroscopic radius (shown in Fig. 1) to shrink into a 

radial-like structure with a micro~copic core. 
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