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Abstract. - Freeze-fractured specimens of the L,, phase of a swollen quasi-ternary surfactant 
(cetylpyridinium chloride/hexanol/brine), have been observed by electron microscopy. The 
textures show the same features as those oberved by optical microscopy, viz. defects with negative 
Gaussian curvature (focal conic domains of the usual type) close to the phase boundary with the 
L, sponge phase, and defects with positive Gaussian curvature (focal conic domains of second 
species, mostly spherolites) close to the phase boundary with the L,  micellar phase. We have 
studied in more detail this latter region : the density of spherolites increases as one approaches the 
L,-LC, transition, up to the point where they seemingly fill the whole space ; their size distribution 
obeys an exponential law we explain by a simple thermodynamic model which predicts a transition 
when the elastic coefficient A = 2 K + K vanishes. Our experimental data yield indeed, with a 
reasonable precision, a very small value of Adlk, T for a composition of the surfactant close to the 
phase boundary. 

1. Inroduction. 

, Swollen lamellar phases ( L a )  constituted b y  equidistant bilayers of  amphiphilic molecules  
separated by  water have been extensively studied for  their structural properties [I], their 
stability with respect t o  their neighbouring phases in the phase diagram 121, their defects  [3, 41. 
Regarding this last point, it should b e  noted that these defects  have been first observed a t  large 

: scales by optical microscopy [3, 41, but very little is k n o w n  at  microscopic scale. T h i s  paper  
reports o n  electron microscopy observations of  freeze-fractured specimens which have been 
prepared by the standard method : a small d r o p  o f  the L ,  phase is inserted between t w o  copper  
plates and  quenched into liquid propane,  then fractured in vacuum ; a thin film of  carbon- 
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platinum is evaporated on the fracture, detached from the sample, and finally observed (for 
details on this technique, see for example Ref. [5]). These observations confirm the results 
obtained at larger scales, implying that the defects are of the same nature at all scales, and .r 

bring some new results which are of a particular interest near phase transitions. Amongst' 
those, the lamellar-micellar (L,-La) transition is studied in more detail ; the defects appear to 
be thermodynamically stable, and the quantitative study of their distribution in size allows one , 

to determine the values of the rigidity moduli of the layers. 
We have investigated the La phase of the quasi-ternary system cetylpyridinium chloride 

(noted CpCl)/hexanol/brine (1  % by weight of NaCl). This lamellar phase extends in the phase 
diagram (see Ref. [I]) between a micellar (L , )  phase for low hexanol versus CpCl ratio 
(r = hlc - 0.5 ) and a sponge (L3) phase for r - 1. Let us briefly recall the results obtained by 
optical microscopy observations. 

In the vicinity of the La-L, phase transition, the typical observed defects layers are the well- 
known focal conic domains of the first species (FCD-I), characterized by constant layer 
thickness and negative Gaussian curvature of the layers i.e. a ,  a, < 0. On the contrary, in the 
vicinity of the La-L, phase transition, the defects have positive Gaussian curvature 
a ,  a2 > 0 ; most of them are spherolites, that are degenerate focal conic domains of the second 
species (noted hereunder FCD-11), with a few FCD-11's of a more generic nature (for details see 
Ref. [4]). The differences between the defects representative of the two regions of the phase 
diagram close to the phase limits can be traced to a difference in the sign of the saddle-splay 
elastic constant K which governs the Gaussian curvature (Fig. 1) ; a quantitative analysis of the 
results has yielded an estimation of the values of this material parameter [3, 41. 

FCD- I, 0102 ( 0  PCD- 11, 0102 >O 

Fig. 1. - Focal conic domains, degenerate cases : a) FCD-In u , a, < 0 ; FCD-11, u ,  a, > 0. The circle 
is virtual in the case of FCD-11. 

2. Energy density of a lamellar phase. 

This section summarizes a few well-known aspects of the phenomenological description of 
lamellar phases and of their defects which are of importance in the following discussion. 

The energy density of a lamellar phase reads, to quadratic order : 
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In this expression a ,  and a, are the principal curvatures of the bilayers, E is the relative 

variation of the layers thickness, K and K are the splay and saddle-splay elastic constants, and 

, B is the compressibility modulus [6]. 
Equation (1) contains three terms. - 
The first two are related to the mean curvature a ,  + a, and the Gaussian curvature 

- a ,  a2 of the bilayers, respectively. The second term is generally omitted because it does not 
enter in the minimization of the energy. This is a direct consequence of the Gauss-Bonnet 
theorem which states that the integral of the Gaussian curvature over a closed surface depends 
only on its topology : 

(N is the number of handles on the surface). For example the integral of equation (2) is equal to 
0 for a torus and to 4 .rr for a sphere. Thus this term is a constant and can be neglected in any 
smooth continuous deformation of the system ; however it plays an important role in any 
change in the topology of the layers. 

A complete description of the energy of the system requires to take into account the energy 
of interaction between the bilayers. This is the third term of equation (1). For an electrically 
neutral system, as it is the case here, this term is of entropic nature and has been studied by 
Helfrich 171. 

Focal conic domains (FCD) are the typical defects of lamellar phases. Their characteristics 
can be simply inferred from equation (I). The energies associated with a pure curvature 
deformation or with a pure compression deformation at large scales (larger than a typical layer 
periodicity) are very different in magnitude, telling us that the system will choose to deform in 
a set of a quasi-equidistant and parallel surfaces, i.e. with vanishingly small compression 
energy. It can be shown that, if so, the system forms FCD's, in which the layers take the shape 
of Dupin cyclides [8]. 

Let us recall the basic features of a FCD. In each domain the layers are folded around two 
conjugate focal lines, viz. an ellipse and a hyperbola, in such a way that everywhere they are 
perpendicular to the straight lines joining any point E on the ellipse to any point H on the 
hyperbola. If the actual part of the layers is between E and H, a ,  a, < 0 ; in the opposite 
situation a ,  a, > 0. These are the defects observed at optical scales. Figure 1 illustrates the 
cases where the ellipse is degenerate to a circle and the hyperbola to a straight line, and 
illustrates the differences between a FCD-I ( a ,  a, < 0 )  and a FCD-I1 (a,  a, > 0). The reader 
will easily recognize that the two cases do not correspond to two different realizations of a FCD 
built on the same focal lines. 

3. Results. 

Starting from the vicinity of the L,-L, phase transition, a first remarkable result is that the 
lamellar phase is filled with spherolites whose density depends critically on the hlc ratio 
(Fig. 2). In each spherolite the lamellae form concentric spheres. The spherolites are 
polydisperse in size and their size distribution follows some characteristic exponential law 

' 
which repeats remarkably well from one part of the sample to another (Fig. 3). At first sight, 
the whole space seems to be filled by spherolites of different sizes, but a closer look at the 
pictures reveals the presence of the layered matrix in a reasonable proportion indeed. An 
estimate of this proportion (made farther on) shows that the planar matrix fills approximately 
half the volume of the sample. The presence of this large matrix of well-oriented 
L, phase suggests also that the fracture which is performed at low temperature in the freeze- 
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Fig. 2. - Freeze-fractured specimen, electron microscopy observation : spherolites near the L,-L, 
phase transition. The lamellar phase is filled with polydisperse spherolites. Note the presence of 
elongated FCD-I1 (arrow). hextCpC1 = 0.7 ; 85 % solvent. Bar 5 pm. 
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Fig. 3. - Hodograph of the surface density of spherolites as a function of the radius measured in freeze- 
fractured specimens. The horizontal error bar (AR)  is the experimental error of measurement of the radii. 
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fracture experiment, and which is well-known to easily follow the layers in such a type of 
material, is practically planar. The typical size of the spherolites which are observed is about 
one micrometer. Note the presence of generic FCD-II's, which are not perfectly spherical 
'M spherolites s, but have the shape of rugby balls. It has been shown elsewhere [3b, 41 that 
spherolites are the FCD-11's of smallest energy, for a given volume. 

The increase of the hexanol versus CpCl ratio r = hlc leads to a progressive disappearance 
.of the spherolites. In the middle of the lamellar phase, for hlc between the L,-La and 
La-L, phase transitions, we observe isolated spherolites embedded in the lamellar phase 
(Fig. 4). These observations confirm the large scales results. 

In the vicinity of the La-L3 phase transition the lamellae are very distorted (Fig. 4). A 
number of them are in contact along areas whose typical size is of the order of one micrometer : 
we do not know whether these contacts are dynamic or static, but they clearly announce the 
formation of the numerous pores which are present in the L, phase. Furthermore we observe a 
large number of screw dislocations, whose stability is most probably related to the negative 
Gaussian geometry of their cores [6]. Note that the areas which surround the zones of contact 
between lamellae are often of negative Gaussian curvature. 

4. A simple model for spherolites. 

We restrict here our discussion to the most novel aspect of this work, viz. the formation of a 
thermodynamically stable set of spherolites, whose density decreases when hlc increases, near 
the La-L, phase transition. This part is theoretical. The comparison with density measurements 
is made in the next section. 

Let R be the diameter of a perfect spherolite ; according to equation ( 1 )  its total curvature 
energy writes : 

To this energy should be added two terms. The first one, W,, relates to the disclination loop 
which circles the spherolites at the contact with the outer layers (Fig. Ib) ; this energy scales 
like the perimeter and is of the order of K R .  The second one, W,, is due to the layer 
compressibility ; as shown in reference [3b], it  scales like BAR' with A = (KIB)"' for 
spherolites whose mean distance 6  is larger than R 2 / A ,  (R2/A is the distance on which the 
stresses decrease exponentially [9]. But, if R s 6  5 R ~ / A ,  a different model should be used ; 
we believe indeed that the stresses are relaxed by the presence of dislocation loops of size 
comparable to 6 ,  so that W ,  scales as a core energy K6 = BA 6 .  We shall check that 
6  = R,  so that W ,  .= BA 2 ~ .  Furthermore, the situation we have investigated is close to the 
L ,  phase, where B is small, so that this term should not be very relevant. Putting together these 
results, we have : 

W,,, = 4 ?r A '  R (4) 

where A '  is a renormalized value of the quantity A = 2 K  + K.  
We assume that the free energy density F is a sum of independent terms 1 F, + F,. Each 

R 

F, refers to the set of spherolites of radius R + 0, and F, refers to the part of the sample which 
is not in a << spherolitic >> state. We shall also use a continuous version of F, viz. 

F = FR - + F,,, where d is the repeat distance of the L, phase. The volume density of J d: 
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Fig. 4. - Freeze-fractured specimen, electron microscopy observation : in the middle of the L, phase. 
Note the presence of spherolite embedded in the lamellar phase. The lamellar phase shows positive 
Gaussian curvature (small arrow) as well as negative Gaussian curvature (big arrow). hex/CpCl = 0.8 ; 
85 % solvent. Bar 0.5 pm. 

Fig. 5. - Freeze-fractured specimen, electron microscopy observation : aspects of the membranes near 
the Lo-L, phase transition. Note the numerous pores in formation. hexICpC1 = 1.0 ; 85 % solvent. Bar 
0.5 pm. 
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spherolites of radius R is noted nR = 4RIvR, where 4, is the volume fraction, and 
V R  = 4 ~ ~ ~ 1 3 .  We have : 

where 4 = z 4R.  The estimation of F o  is a real difficulty in the present problem. In fact, while 
R 

the structure of the free energy density F o  remains unknown, its variation can be reached more 
I 

easily. I r  would he wrong to write : F ,  = - k B  T(I - 4 ) In (1 - 4 ) where v o  is some mean 
v o  

volume of an << elementary object D relative to the << non spherolitic D part of the sample. The 
molecules themselves, being so small compared to the spherolites, do not know whether they 
belong or not to a spherolite ; hence they play no r81e in the total balance of the entropy when a 
variation 6 c $ ~  occurs, except may be along the singularities (the equators of the spherolites and 
their centers), but this contribution scales like the entropy of the spherolites themselves and 
does not bring anything new. The molecules are not these elementary objects. On the other 
hand, the variation of the density of the spherolites strongly affects the entropy of the non- 
spherolitic part. Consider a variation 64 = 64,, i.e. restricted to some particular value of 
R .  This variation affects F,, bui also F,,  since 4 varies. The quantity : 

would be the entropy of the non-spherolitic part supposed filled (in a gedanke experiment) with 
non-spherolites of size R .  The reasoning follows in fact closely the approach used to calculate 
the entropy of vacancies in a monoatomic crystal. This means also that the appearance (or 
conversely, the disappearance) of some relative volume 6 4 ~  of spherolites of radius 
R involves a relative number of cc elementary objects D S4RI~R.  Hence the variation of the 

k  entropy of the non-spherolitic part would be 6SR = - 64,  In e ( l  - 4 ), and the variation of 
0 R 

the total free energy Fo,  which is the sum of the entropy variations should therefore read : 

In the continuous version, we replace z dR by 4 R  ;i- dR and equation (7) by 
R 

Entropy has been taken into account in equations (5) and (7) with the assumption that the 
spherolites form a regular solution of species labelled by the different values of R. This mean- 
field picture overestimates the total entropy and the total internal energy, since it neglects all 
correlations between spherolites of different sizes. The latter assumption might however be 
valid to a large extent. As indicated above, the interaction is mostly of elastic origin 
(B term). Consider then two sets of spherolites Ro and R ,  ; they form two distinct disordered 
nets with uncorrelated characteristic distances 6 0  and 6 ,  ; hence the energy of interaction of 
the two nets does not depend on the small fluctuations of their individual spherolites, nor on the 
relative <c phase x of the two nets. Therefore we expect that the long-range elastic interactions 
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are mostly intra-net. Shor-t-range interactions, i.e. those related to the excluded volume effects 
between spherolites belonging to different nets, will be neglected. Note further that the 
B term becomes probably less important near the La-L, phase transition, a fact which - 
decreases even more the elastic interaction and eventually brings A' closer to A.  Let us now. .- 
examine the free energy in more detail ; we distinguish two cases : 

i) A' > 0. Minimizing F with respect to 4, yields : - 

When integrating this expression with respect to R, we get : 

The inequality ( a 2 ~ l a 4  2)R > 0 is satisfied, whatever R may be, when 4, takes the value of 
equation (8) : the solution is stable. It can also easily be shown that, for the same value of 
4,, (aFRIaR)4H cannot vanish. Hence it is not possible to minimize the free energy with 

respect to R and there is no unique solution for R : we expect a disti-ihution of spherolites of 
different sizes. One can finally show that the appearance of these defects in the 
L, phase decreases the free energy of the perfectly flat phase. 

According to equation (9), the medium is entirely invaded by the spherolites (i.e. 
4 -+ I), when A '  + 0. This implies that the L, phase with spherolites is no longer stable, and 
another phase does appear. The present approach does not enable us to define i t  any better. It is 
probably the L ,  phase. 

ii) A' < 0. The same equations as above (Eqs. (8, 9)) still hold, but now equation (8) yields 
4 > 1, which is inconsistent with the definition of 4 .  Therefore equation (7) does not describe 
properly the case A' < 0 (the L,  phase ?). 

5. Density measurements. 

The theory developed for the case A' > 0 seems to describe reasonably well our experimental 
findings. The volume density n, is related to the surface density n;, i.e. the density measured 
experimentally in a 2D cut, by the relation nk = nf3, which is easily obtained if one notices 
that ni  6, ' = n,. Here 6; = n, (I3 is the mean distance between two spherolites of radius 
R. We can safely use this estimates of n,, because the fracture is quasiplanar, as argued above. 
Comparison of equation (8) with experimental data (Fig. 3) yields the following expression for 
nk : 

where 3.6 x is the slope of the logarithmic plot of n i  R~ as a function of Rld. The 
corresponding value of 4 obtained from equation (9) is 0.56, while the experimental value 
obtained from the plot of figure 3 is 0.52. 

Since this expression yields so small a value for A',  we assume A' - A and get 
KIK as : t 

where kc = Kd. 
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The periodicity d of the lamellar phase studied here is typically of the order of 150 ; the 
curvature modulus of the lamellar phase is about a few k ,  T, thus 

.- -r r, = + 3.6 x k ,  TI4 r k ,  

-- is  small and positive. 

We found that KIK is very close to the value at which A -P 0 ,  where we expect a divergence 
L 

-of the volume fraction of defects, i.e. a phase transition. 
If A = 2 K + K is small, the phase must be filled with spherolites, which is the case when 

hlc is small. A contrario when A increases the phase should have a lower density of spherolites. 
Experimentally we found that this is the case. Thus the increase of hlc leads to an increase of 
KIK. 

6. Why the distribution is not fractal. 

We end this discussion by a brief comment on the fact that the distribution is exponential, not 
algebraic, i.e. not fractal. 

Let us first recall that a fractal distribution has already been invoked in the problem of filling 
space with (conically shaped) FCD-1's [lo]. There are similarities, but also differences 
between the two problems. In particular, while the filling with spheres is a genuine 3D 
problem, the FCD-I space filling is 2D : the length of the cone is equal approximately to the 
characteristic size L of the sample, while the base has a radius a which ranges from 
- L to some small value a *. According to reference [ 101, one first places inside the sample the 
largest possible domain, with base radius a - L, then the gaps are filled with smaller domains, 
in such a way that neighboring domains are in contact along a generatrix of the cones (Friedel's 
law of corresponding cones [8]) and the bases are tangent. This process continues down to 
molecular scales, with a * - A - &IB. The result a * - A is an intrinsic feature of the model, 
since the space filling is the result of a competition between layer compressibility and 
curvature elasticity. However, there is another natural limit for a *  in the FCD-I filling, which 
originates in the anisotropy A a  of the surface tension. As a matter of fact, the part of the 
sample which does not belong to a FCD-I can be either filled with FCD-I1 (at least in certain 
geometries [I I]) ,  or by dislocation loops which relax the layer elasticity. The regions with 
FCD-I and FCD-I1 fillings have different surface orientations ; as a result, the balance of the 
surface and curvature terms yield a new characteristic length [12], a * - Kl(- A o  ) which can 
be very different from A .  

Let us now consider in turn the other type of space filling, with FCD-11's. There is only one 
characteristic length for each spherical FCD-11, viz. its radius a (we restrict our considerations 
to spheroIites), which varies from some macroscopic value L (in general the sample size at 
rest ; a length depending on the shear rate, if any, has been introduced in Ref. [13]) to some 
minimal a *. There are no special geometricaI conditions akin to Friedel's law of corresponding 
cones when two spherolites are neighbors (there is no way to eliminate the elastic distortion of 

. the layers) as in the FCD-I case, and there is no anisotropy of the global geometry, which is 
3D, consequently we do not expect special surface tension effect which would specify 
a *. 

Having pointed out these differences with FCD-1's iterative filling, let us now put the stress 
on the differences with the former exponential filling. A fractal of spheres of different sizes 
would be inhomogeneous at all scales, so that our previous arguments about the irrelevance of 
the elastic interactions would fail ( I ) .  Assuming that the spheres pack randomly, the elastic 

(I) ReciprocaIIy, we may wonder whether the growth process of a set of objects into the shape of a 
fractal is not due to a strongly inhomogeneous distribution of stresses which do not reIax during growth. 
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energy now probably scales like the residual volume [lo].  Let g = (LIr)Y be the numbers of 
spheres of radius R larger than r packed in a volume f2 I L ~ .  The  residual volume is 
V ( r )  = 0 (LIr )" ; the total free energy F ( r )  scales like : 

1 -  

r 

There is no entropy term, because the packing processes which starts from the biggest, - 
spheres ( R  = L ), in a volume of size L, continues with spheres of decreasing sizes, is pratically 

~ 

deterministic (but to  indiscernability of equal spheres). The  smaller the residual volume, the 
more so. According to  reference [14], a relevant value of the exponent y is ca. 2.8. This value 
yields indeed i) a minimum of F ( r )  when A w 0 (the condition for a minimum to  exist being 
1 < y < 3) and ii) a minimum value for r ,  viz. : r,,, x f i  ( y  - 1 )1(3 - 7 ) .  The latter 

minimum does not show up in the former theory ; furthermore the energy is now positive. In 
other words, a fractal random packing cannot describe a phase with thermodynamic defects, 
but a possible phase of another nature. 
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