## Chapter 4 - Additional Topics with Functions

## Content:

Section 4.2 Combining Functions; Composite Functions ..... 1
Section 4.3 Inverse Functions ..... 4

## Section 4.2 Combining Functions; Composite Functions

When functions are combined using algebraic operations (,,+- * and $/$ ), the result is a function.

Example from section 1.3 is a profit (P) represented as a difference between revenue (R) and cost (C).
For $R(x)=20 x$ and $C(x)=10 x+1000$, profit $P(x)$ is computed as:
$P(x)=R(x)-C(x)=20 x-(10 x+1000)=20 x-10 x-1000=10 x-1000$

As opposed to combined functions where each function independently works on the same domain ( x -value), composite functions work on the output of the previous function:
$(f \circ g)(x)=f(g(x))$
In this case, $f$ works on $g(x)$, the output of $g$ function.

As a result, computation is done from the inside out $g(x)$ must be computed first and then computed value is plugged into $f$.

Example: If $f(x)=3 x$ and $g(x)=x-1$, compute $\left(f^{\circ} g\right)(5)$
$(f \circ g)(5)=f(g(5))$
$g(5)=5-1=4$
$f(g(5))=f(4)=3 * 4=12$, so the final answer is $f(g(5))=12$

Order of functions often makes the difference in composite functions: $\left(f^{\circ} g\right)(x)$ is often not the same as $\left(g^{\circ} h\right)(x)$

Example: If $f(x)=3 x$ and $g(x)=x-1$, compute $\left(g^{\circ} f\right)(5)$

$$
\begin{aligned}
& \left(g^{\circ} f\right)(5)=g(f(5)) \\
& f(5)=3 * 5=15 \\
& g(f(5))=g(15)=15-1=14, \text { so the final answer is } g(f(5))=14
\end{aligned}
$$

Example - the difference between combined and composite functions.
Just read it. There is no need to put this into your notes.
A person ( $x$ ) needs to do hairdo ( $h$ ) and manicure ( $m$ ) - hairdo and manicure are two functions. When these two functions operate on the same person ( x ), the result is a manicured person with a nice hairdo (r). Adding two functions makes them combined functions.

$$
r(x)=h(x)+m(x)
$$

Now consider washing the hair ( $w$ ) and blow-dry ( $b$ ). These two functions done on the same person ( x ) represent composite functions and, depending on the order, they will produce two different results:
$\left(b^{\circ} w\right)(x)=$ nice hhhhhhh hhhhairdo
$\left(w^{\circ} b\right)(x)=$ wet hhhhair

Example 7. If $f(x)=\sqrt{x-5}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}^{2}-4$.
c. Compute $\left(f^{\circ} g\right)(-3)$ and $(g \circ f)(9)$ without using a calculator.

$$
\begin{aligned}
& (f \circ g)(-3)=f(g(-3)) \\
& g(-3)=2^{*}(-3)^{2}-4=2^{*} 9-4=18-4=14 \\
& f(14)=\sqrt{14-5}=\sqrt{9}=3
\end{aligned}
$$

$$
\text { The answer is: }\left(f^{\circ} g\right)(-3)=3
$$

$$
(g \circ f)(9)=g(f(9))
$$

$$
f(9)=\sqrt{9-5}=\sqrt{4}=2
$$

$$
g(2)=2^{*} 2^{2}-4=8-4=4
$$

The answer is: $\left(g^{\circ} f\right)(9)=4$

Example: If $f(x)=\sqrt{x-5}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}^{2}-4$ compute $(g \circ f)(-3)$
$(g \circ f)(-3)=g(f(-3))$
$f(-3)=\sqrt{-3-5}=\sqrt{-8}$ this not defined in rational numbers.
Since $f(-3)$ is not defined, $g(f(-3))$ is also not defined.

We found out that $\left(f^{\circ} g\right)(-3)=3$ while $\left(g^{\circ} f\right)(-3)$ is not defined.
This shows two things:

1. The order in which the functions are applied usually produces different results.
2. The domains of both $f$ and $g$ affect the result of composite functions.

This is why the definition of composite functions listed below must include a statement about the domains as well.

The composite function $f$ of $g$ is denoted by $f^{\circ} g$ and is defined as:

$$
\left(f^{\circ} g\right)(x)=f(g(x))
$$

The domain of $f^{\circ} g$ is the subset of the domain for $g$ for which $f^{\circ} g$ is defined. also
$(g \circ f)(x)=g(f(x))$
The domain of $g{ }^{\circ} f$ is the subset of the domain for $f$ for which $g{ }^{\circ} f$ is defined.

ICE - 4.2:21 Use $f(x)=2 x^{2}$ and $g(x)=\frac{x-5}{3}$ to evaluate composite functions.
Also, discuss the domains.
a. $\left(f{ }^{\circ} g\right)(2)$
b. $\quad\left(g^{\circ} f\right)(-2)$

So far we computed the values for composite functions but we can leave the variable as is, to get a generic composite function:

Example 6. Find $\left(h^{\circ} f\right)(x)$ using $f(x)=2 x-5$ and $h(x)=\frac{1}{x}$
$\left(h^{\circ} f\right)(x)=h(f(x)$
$f(x)=2 x-5$
$h(2 x-5)=\frac{1}{2 x-5}$
The answer is: $\left(h^{\circ} f\right)(x)=\frac{1}{2 x-5}$

## Section 4.3 Inverse Functions

Composite functions where order does not matter and the result is identity function ( $y=x$ ) are inverse functions.

Functions $f$ and $g$ for which $f(\boldsymbol{g}(\boldsymbol{x}))=\boldsymbol{x}$ for all x in the domain of $g$

$$
\begin{aligned}
& \text { and } \\
& g(f(x))=x \quad \text { for all } \mathrm{x} \text { in the domain of } f
\end{aligned}
$$

are called inverse functions.

If that is the case, then $g$ can be denoted as $f^{-1}$ (read $f$ inverse).
Note that in this case, -1 does not represent the exponent. In other words: $f^{-1} \neq \frac{1}{f(x)}$
How do we know if a function $f$ has an inverse function $f^{-1}$ ?
If $f$ is a one-to-one function then it has a $f^{-1}$.

A one-to-one function has for every element of the range only one element in the domain.
Example of the function that does not have the inverse function is $f(x)=x^{2}$
Example of the function that has an inverse function is $f(x)=x^{3}$



If no horizontal line intersects the graph of a function in more than one point then the function is a one-to-one function (and therefore it has an inverse function).

Steps to find the inverse function:

1. Rewrite the equation replacing $f(x)$ with $y$
2. Interchange $x$ and $y$ in the equation.
3. Solve the new equation for $y$. If the solution is not unique then there is no inverse function.
4. Replace $y$ with $f^{-1}(x)$

Example 3. a. Find the inverse function of $f(x)=\frac{2 x-1}{3}$
a. Graph $f(x)=\frac{2 x-1}{3}$ and its inverse function on the same axes.

| Rewrite the equation replacing $f(x)$ with $y$ | $y=\frac{2 x-1}{3}$ |
| :---: | :--- |
| Interchange $x$ and $y$ in the equation | $x=\frac{2 y-1}{3}$ |
| Solve the new equation for $y$ | $3 x=2 y-1 \quad x+1=2 y \quad \frac{3 x+1}{2}=y$ |
| Replace $y$ with $f^{-1}(x)$ | $f^{-1}(x)=\frac{3 x+1}{2}$ |



Graphs of inverse functions are symmetrical with respect to the line $\mathrm{y}=\mathrm{x}$.

## Inverse functions on limited domains

Some functions may not have inverse functions when the domain $(D)$ is all real numbers $(R)$ but if the domain is a subset of $R$ where they are on-to-one function, on that limited domain they have an inverse function.

Example: The function $f(x)=x^{2}$ on $D=R \quad$ (or $x \in R$ ) has no inverse function. The function $f(x)=x^{2}$ on $\boldsymbol{D}=[\mathbf{0}, \infty) \quad($ or $\boldsymbol{x}>0)$ is one-to-one and has the inverse function.



So if the starting function is: $f(x)=x^{2}$ where a domain is restricted to $x>0$ steps to find inverse function are the same as before only we must carry on domain restriction as well.

| Rewrite the equation replacing $f(x)$ with $y$ | $y=x^{2} \quad$ where $x>0$ |
| :--- | :--- |
| Interchange $x$ and $y$ in the equation and <br> restriction. | $x=y^{2} \quad$ where $y>0$ |\(\left|\begin{array}{ll}y= \pm \sqrt{x} \quad but since y>0 final solution is <br>

y=\sqrt{x} \quad and x>0 because of even root\end{array}\right|\)| Solve the new equation for $y$ | $f^{-1}(x)=\sqrt{x} \quad x>0$ |
| :--- | :--- |
| Replace $y$ with $f^{-1}(x)$ |  |



ICE: 4.3:16 Find inverse function for $g(x)=4 x+1$

$$
y=4 x+1 \quad x=4 y+1 \quad x+1=4 y \quad y=\frac{x+1}{4} \quad g^{-1}=\frac{x+1}{4}
$$

