
 Chapter 14 discuss Derived
classes, Inheritance, and
Polymorphism

 Inheritance Basics

 Inheritance Details

 Polymorphism

 Virtual Functions

Inheritance

Data Structures
and Other Objects
Using C++

Presenter
Presentation Notes
The presentation illustrates the concepts of Inheritance and Polymorphism

Inheritance Basics

 Inheritance is the process by which a new
class, called a derived class, is created from
another class, called the base class
A derived class automatically has all the member

variables and functions of the base class
A derived class can have additional member

variables and/or member functions
The derived class is a child of the base or parent

class

We will define a class called clock for all
possible clocks

The clock class will be used to define
classes that keep track of the time

A Base Class – an example

A clock Class

 A Clock class keeps track of a time value such as 9:48 pm

class Clock
 {
 public:
 // CONSTRUCTOR
 clock();
 // MODIFICATION FUNCTIONS
 void set_time(int hour, int minute, bool morning);
 void advance(int minutes);
 // CONSTANT FUNCTIONS
 int get_hour() const;
 int get_minute() const;
 bool is_morning() const;
 private:
 int my_hour;
 int my_minute;
 int my_morning;
 };

A derived class

A derived class inherits all the members of
the parent class
The derived class does not re-declare or re-

define members inherited from the parent,
except…
The derived class re-declares and re-defines

member functions of the parent class that will have a
different definition in the derived class

The derived class can add member variables and
functions

Examples of derived classes

class Cuckoo_Clock : public Clock
// a cuckoo_clock
 {
 public:
 bool is_cuckooing() const;
 };

class Clock24 : public Clock
// a military clock
 {
 public:
 int get_hour() const;
 };

Cuckoo_Clock is derived from class
Clock
 Cuckoo_Clock inherits all member functions and

member variables of Clock
 The class definition begins

class Cuckoo_Clock : public Clock

 :public clock shows that Cuckoo_Clock is derived
from class Clock

 A derived class can declare, in necessary, additional
member variables

Class cuckoo_clock

Any member functions added in the derived
class are defined in the implementation file
for the derived class
Definitions are not given for inherited functions

that are not to be changed

bool cuckoo_clock::is_cuckooing() const

 {

 return (get_minute() == 0);

 }

Implementing a Derived Class

Parent and Child Classes

 Recall that a child class automatically has all
the members of the parent class

 The parent class is an ancestor of the child
class

 The child class is a descendent of the parent
class

 The parent class (Clock) contains all the
code common to the child classes
You do not have to re-write the code for each child

Derived Class Types

A cuckoo clock is a clock
 In C++, an object of type Cuckoo_Clock can be

used where an object of type Clock can be used
An object of a class type can be used wherever

any of its ancestors can be used
An ancestor cannot be used wherever one of its

descendents can be used

Default Initialization

 If a derived class does not declare any
constructor for the derived class, C++ provides
automatically the default constructor:

 Steps performed by C++:
1. Activate the default constructor for the base class

to initialize the member variable of the base class
2. Activate the default constructor for any new

member variable of the derived class.

Example

 If class B is derived from class A and class
C is derived from class B
When a object of class C is created

The base class A's constructor is the first invoked
Class B's constructor is invoked next
C's constructor completes execution

Assignment Operator

 If a derived class does not define its own assignment
operator C++ will automatically provide one.

 Steps for the application of the assignment operator:
1. Activate the assignment operator for the base class
2. Activate the assignment operator for any new

member variable that is in the derived class but not in
the base class.

Destructor

 If a derived class does not have a declared
destructor C++ will automatically provide one.

 Steps for the application of the destructor:
1. The destructor will be called for any member

variable of the derived class not in the base class
2. The destructor is called for the base class

Example of Destruction Sequence

 If class B is derived from class A and class
C is derived from class B…
When the destructor of an object of class C

goes out of scope
The destructor of class C is called
Then the destructor of class B
Then the destructor of class A

Notice that destructors are called in the reverse
order of constructor calls

 A derived class can define its own constructor
 The base class constructor can be invoked by the

constructor of the derived class, if required.

class Animal : public Organism

 {

 public:

 // CONSTRUCTOR

 Animal(double init_size = 1, double init_rate = 0,
 double init_need = 0);

 }

Derived Class Constructors

 When defining a derived class, only list the inherited functions
that you wish to change for the derived class (override)

Member Functions Overriding

int Clock24::get_hour() const
 {
 int ordinary_hour;
 ordinary_hour = clock::get_hour();
 if (is_morning())
 {
 if (ordinary_hour == 12)
 return 0;
 else
 return ordinary_hour;
 }
 else
 {
 if (ordinary_hour == 12)
 return 12;
 else
 return ordinary_hour + 12;
 }
 }

int Clock::get_hour() const
 {
 return my_hour;
 }

Redefining or Overloading?

 A function redefined in a derived class has the
same number and type of parameters
 The derived class has only one function with the

same name as the base class

 An overloaded function has a different number
and/or type of parameters than the base class
 The derived class has two functions with the same

name as the base class
 One is defined in the base class, one in the derived class

Access to a Redefined Base Function

When a base class function is redefined in a
derived class, the base class function can
still be used
To specify that you want to use the base class

version of the redefined function:

 Clock24 tick;
 tick.Clock::get_hour();

Polymorphism

 Polymorphism refers to the ability to
associate multiple meanings with one
function name using a mechanism called
late binding

 Polymorphism is a key component of the
philosophy of object oriented programming

A Late Binding Example

 Imagine a graphics program with several
types of figures
Each figure may be an object of a different

class, such as a circle, oval, rectangle, etc.
Each shape is a descendant of a class Figure
Each shape has a function draw() implemented

with code specific to each shape
Class Figure has functions common to all

figures

A Problem

 Suppose that class Figure has a function center()
 Function center() moves a figure to the center of the

screen by erasing the figure and redrawing it in the
center of the screen

 Function center() is inherited by each of the derived
classes
 Function center() uses each derived object's draw function to

draw the figure
 The Figure class does not know about its derived classes, so it

cannot know how to draw each figure

Virtual Functions

 Because the Figure class includes a method to
draw figures, but the Figure class cannot know
how to draw the figures, virtual functions are
used

Making a function virtual tells the compiler that
you don't know how the function is
implemented and to wait until the function is
used in a program, then get the implementation
from the object.
 This is called late binding

Benefits of a well-written Base class

With a well written base class, a programmer
can write derived classes without worrying
about how the base class accomplishes its
work.

When to require virtual member function?
When one member function activates another

member function and the programmer anticipates
that the other member function will be overridden
in the future.

Private and Protected

A private member variable or function in the
parent class is not accessible to the child class
The public parent class member functions must be

used to access the private members of the parent
 protected members of a class appear to be

private outside the class, but are accessible by
derived classes
Protected members are not necessary but are a

convenience to facilitate writing the code of
derived classes

Pure Virtual Functions and
Abstract Classes
 A pure virtual function is indicated by =0 before the

end of the semicolon in the prototype.

 The class does not provide any implementation of a pure
virtual function.

 Because there is no implementation, any class with a
pure virtual function is called an abstract class and no
instances of an abstract class may appear in a program

 Abstract classes are used as base classes, and it is up
to the derived class to provide the implementation
for each pure virtual function

Virtual Destructors

Whenever a class has virtual methods it is a
good idea to also provide a destructor, even if
the base class has no need for a destructor.

With a virtual destructor the compiler arranges
for the right destructor to be called at run time,
even when the compiler is uncertain about the
exact data type of the object.

 Ex. virtual ~game()

 A derived class inherits all the members of the parent class

 A derived class can add new members and/or override
existing members of the parent class

 Polymorphism refers to the ability to associate multiple
meanings with one function name using a mechanism called
late binding

 Late binding is achieved by declaring a function as virtual

 A virtual function tells the compiler that you don't know how the
implementation of the function and that you need to wait until the
function is used in a program to get the implementation from the
object.

 Summary

Presenter
Presentation Notes
A quick summary of these algorithms' timing properties.

Chapter 14 -- End

	Inheritance
	Inheritance Basics
	A Base Class – an example
	A clock Class
	A derived class
	Examples of derived classes
	Class cuckoo_clock
	Implementing a Derived Class
	Parent and Child Classes
	Derived Class Types
	Default Initialization
	Example
	Assignment Operator
	Destructor
	Example of Destruction Sequence
	Derived Class Constructors
	Member Functions Overriding
	Redefining or Overloading?
	Access to a Redefined Base Function
	Polymorphism
	A Late Binding Example
	A Problem
	Virtual Functions
	Benefits of a well-written Base class
	Private and Protected
	Pure Virtual Functions and Abstract Classes
	Virtual Destructors
	 Summary
	Chapter 14 -- End

