
Instruction Formats

• An instruction consists of an opcode,
usually with some additional information
such as where operands come from, and
where results go.

• The general subject of specifying where the
operands are is called addressing.

• Several possible formats for level 2
instructions are shown on the next slide.

Common Instruction Formats

Four common instruction formats:
(a) Zero-address instruction. (b) One-address instruction
(c) Two-address instruction. (d) Three-address instruction

Instruction Formats

• On some machines, all instructions have the
same length; on others there may be many
different lengths.

• Instructions may be shorter than, the same
length as, or longer than the word length.
 Having a single instruction length is simpler

and makes decoding easier, but is less efficient.

Common Instruction Formats

Some possible relationships between
instruction and word length.

Expanding Opcodes

 We will now examine tradeoffs involving both
opcodes and addresses.
 Consider an (n + k) bit instruction with a k-bit

opcode and a single n-bit address.
• This instruction allows 2k different operations and 2n

addressable memory cells.
• Alternatively, the same n + k bits could be broken

up into a (k - 1) bit opcode and an (n + 1) bit
address, meaning half as many instructions and
either twice as much addressable memory or the
same amount of memory with twice the resolution.

Expanding Opcodes

 The concept of a expanding opcode can best
be seen through an example.
 Consider a machine in which instructions are

16 bits long and addresses are 4 bits long.
• This might be reasonable on a machine that has 16

registers on which all arithmetic operations take
place.

• One design would be a 4-bit opcode and three
addresses in each instruction, giving 16 three-
address instructions.

Expanding Opcodes

An instruction with a 4-bit opcode and
three 4-bit address fields.

Expanding Opcodes

 However, if the designers need 15 three-address
instructions, 14 two-address instructions, 31
one-address instructions, and 16 instructions
with no address at all, they can use opcodes 0 to
14 as three-address instructions but interpret
opcode 15 differently.

• Opcode 15 means that the opcode is contained in
bits 8 to 15 instead of 12 to 15.

Expanding Opcodes

An expanding opcode allowing 15 three-address
instructions14 two-address instructions, 31 one-address
instructions, and 16 zero-address instructions.

The fields marked xxxx, yyyy, and zzzz are 4-bit address
fields.

UltraSPARC III Instruction
Formats

The original SPARC instruction formats.

8051 Instruction Formats

Addressing

 A large portion of the bits in a program are
used to specify where the operands come from
rather than what operations are being
performed on them.

• An ADD instruction requires the specification of
three operands: two sources and a destination.

• If memory addresses are 32 bits, the instruction
takes three 32-bit addresses in addition to the
opcode.

 Two general methods are used to reduce the
size of the specification

Addressing

• If an operand is to be used several times, it can be
moved to a register.
 To do this, we must perform a LOAD (which includes the

full memory address).
• A second method is to specify one or more

addresses implicitly.
 Use a two-address instruction, for example.
 The Pentium 4 uses two-address instructions while the

UltraSPARC III uses three-address instructions.
 If we have instructions which can work with only one

register, we can have one-address instructions.
 Finally, using a stack we can have zero-address

instructions (the JVM IADD, for example).

Addressing Modes

 There are many different ways we can specify
addresses. These are called addressing modes.
 The simplest way for an instruction to specify

an operand is to include the operand rather than
an address or some other information
describing where the operand is. This is called
immediate addressing and the operand is
called an immediate operand.

• This only works with constants.
• The number of values is limited by the size of the

field.

Immediate Addressing

• An immediate instruction for loading 4 into
register

Direct Addressing

 A method for specifying an operand in memory
is just to give its full address. This is called
direct addressing.
 The instruction will always access exactly the

same memory location.
• Thus direct addressing can only be used to access

global variables whose address is known at compile
time.

• Many programs have global variables so this
method is widely used.

Register Addressing

 Register addressing is conceptually the same as
direct addressing but specifies a register rather
than a memory location.

• Because registers are so important this addressing
mode is the most common one on most computers.

• Many compilers determine the most frequently used
variables and place them in registers.

• This addressing mode is known as register mode.
• In load/store architectures such as the UltraSPARC

III, nearly all instructions use this addressing mode
exclusively.

Register Indirect Addressing

 In this mode, the operand being specified
comes from memory or goes to memory, but its
address is not hardwired into the instruction, as
in direct addressing.
 Instead the address is contained in a register.
 When an address is used in this manner it is

called a pointer.
 Register indirect addressing can reference

memory without having a full memory address
in the instruction.

Register Indirect Addressing

Register Indirect Addressing: a generic assembly
program for computing the sum of the elements of
an array.

Register Indirect Addressing

 The previous program used several addressing
modes.

• The first three instructions use register mode for the
first operand, and immediate mode for the second
operand (a constant indicated by the # sign).

• The body of the loop itself does not contain any
memory addresses. It uses register and register
indirect mode in the fourth instruction.

• The BLT might use a memory address, but most
likely it specifies the address to branch to with an 8-
bit offset relative to the BLT instruction itself.

Indexed Addressing

 It is frequently useful to be able to reference
memory words at a known offset from a
register. (Remember in IJVM we referenced
local variables by giving their offset from LV).
 Addressing memory by giving a register

(explicit or implicit) plus a constant offset is
called indexed addressing.

• We can also give a memory pointer in the
instruction and a small offset in the register

Indexed Addressing

A generic assembly program for computing the OR of
Ai AND Bi for two 1024-element arrays.

Indexed Addressing

A possible representation of MOV R4,A(R2).

Based Indexed Addressing

 Some machines have an addressing mode in
which the memory address is computed by
adding up two registers plus an (optional)
offset.
 Sometimes this mode is called based-indexed

addressing.
• One of the registers is the base and the other is the

index.
• We could have used this mode in the previous

program to write:
LOOP: MOV R4, (R2+R5)

AND R4, (R2+R6)

Stack Addressing

 We have noted that it is desirable to make machine
instructions as short as possible.

• The ultimate limit in reducing address lengths is having no
addresses at all.

• As we have seen, zero-address instructions, such as IADD are
possible in conjunction with a stack.

• It is traditional in mathematics to put the operator between the
operands (x + y), rather than after the operands (x y +).

• Between the operands is called infix notation.
• After the operands is called postfix or reverse Polish notation.

Reverse Polish Notation

 Reverse Polish notation has a number of
advantages over infix for expressing algebraic
formulas.

• Any formula can be expressed without parentheses.
• It is convenient for evaluating expressions on

computers with stacks.
• Infix operators have precedence, which is arbitrary

and undesirable.
• There are several algorithms for converting infix

formulas into Polish notation. This one is by
Dijkstra.

Reverse Polish Notation

• Assume that a formula is composed of the following
symbols: variable, the dyadic (two-operand)
operators + - * /, and left and right parentheses. A
special symbol marks the ends of a formula.

• The following slide shows a railroad track from
New York to California with a spur that goes to
Texas. Each symbol in the formula is represented by
a railroad car. The train moves westward.

• Cars containing variables always go to California.
The special symbol always go to Texas.

Reverse Polish Notation

Reverse Polish Notation

 The other symbols must inquire about the contents of
the nearest car on the Texas line before entering the
switch. The possibilities are:

1. The car at the switch heads toward Texas.
2. The most recent car on the Texas line turns and goes to

California.
3. Both the car at the switch and the most recent car on the Texas

line are hijacked and disappear (i.e. both are deleted).
4. Stop. The symbols now on the California line represent the

RPN formula read from left to right.
5. Stop. The original formula contained an error.

Reverse Polish Notation

Decision table used by the infix-to-reverse Polish notation algorithm

Reverse Polish Notation

Some examples of infix expressions and
their reverse Polish notation equivalents.

Reverse Polish Notation

 RPN is the ideal notation for evaluating
formulas on a computer with a stack.

• The formula consists of n symbols, each one either
an operand or an operator.

• Scan the RPN string from left to right. When an
operand is encountered, push it onto the stack. When
an operator is encountered, execute the
corresponding instruction.

• The following figure shows the evaluation of (8 + 2
× 5) / (1 + 3 × 2 - 4) in JVM. The corresponding
RPN formula is 8 2 5 × + 1 3 2 × + 4 - /

Reverse Polish Notation

Use of a stack to evaluate a reverse Polish notation formula.

Addressing Modes for
Branch Instructions

• Branch instructions (and procedure calls) also
need addressing modes for specifying the target
address.
 The modes we have examined so far also work for

branches for the most part.
 However, other addressing modes also make sense.
 Register indirect addressing allows the program to

compute the target address, put it in a register, and then
go there.

• The target address is computed at run time.

Addressing Modes for
Branch Instructions

 Another reasonable mode is indexed mode,
which offsets a known distance from a register.

 It has the same properties as register indirect mode.

 Another option is PC-relative addressing.
• In this mode, the (signed) offset in the instruction

itself is added to the program counter to get the
target address.

• In fact, this is simply indexed mode, using PC as the
register.

Orthogonality of Opcodes
and Addressing Modes

 Instructions and addressing should have a
regular structure, with a minimum number of
instruction formats.

• Such a structure makes it easier for a compiler to
produce good code.

• All opcodes should permit all addressing modes,
where that makes sense.

• All registers should be available for all register
modes.

• The following slide shows an example of a clean
design for a three operand machine.

Orthogonality of Opcodes
and Addressing Modes

A simple design for the instruction formats of a three-
address machine.

Orthogonality of Opcodes
and Addressing Modes

 Up to 256 opcodes are supported.
 In format 1, each instruction has two source

registers and a destination register.
• All arithmetic and logical instructions use this

format.
• The unused 8-bit field at the end can used for further

instruction differentiation.
 If bit 23 is set, format 2 is used and the second

operand is no longer a register but a 13-bit
signed immediate constant.

• LOAD and STORE can also use this format in
indexed mode.

Orthogonality of Opcodes
and Addressing Modes

 A small number of additional instructions are
needed, such as conditional branches, but they
could easily fit in format 3.

• For example, one opcode could be assigned to each
(conditional) branch, procedure call, etc., leaving 24
bits for a PC relative offset.
 Assuming that offset is counted in words, the range would

be 32 MB.
• Also a few opcodes could be reserved for LOADs

and STOREs that need the long offsets of format 3.
 A design for a two-address machine is shown

on the following slide.

Comparison of Addressing
Modes

A comparison of addressing modes.

Instruction Types

• There are several groups of instruction
types:
 Data Movement Instructions
 Dyadic Operations
 Monadic Operations
 Comparison and Conditional Branches
 Procedure Call Instructions
 Loop Control
 Input/Output

Instruction Types

• Data Movement Instructions
 Might better be called data duplication

instructions.
 LOAD - memory to register
 STORE - register to memory
 MOVE - register to register

Instruction Types

• Dyadic Operations
 Addition/Subtraction
 Multiplication/Division
 Boolean Operations: AND, OR, XOR, NOR,

NAND.
• AND can be used to extract bits from a word by

ANDing together the word with a constant mask.
• The result is shifted to obtain the correct bits.

Instruction Types

• Monadic Operations
 SHIFT and ROTATE

• Can be used to implement multiplication and
division by powers of 2.

 INCREMENT and DECREMENT
 NEG

Instruction Types

• Comparison and Conditional Branches
 We may need to test a condition before

branching to a statement beginning with a
LABEL.
 Some machines have condition bits that are

used to indicate specific conditions.
• Carry bit, for example.

 Branch if a word is zero is an important
instruction.

• Can also compare two words - a comparison bit is
set.

Instruction Types

• Loop control
 The need to execute a group of instructions a

fixed number of times occurs frequently and
thus some machines have instructions to
facilitate this.

• All the schemes involve a counter that is increased
or decreased by some constant once each time
though the loop.

• The counter is also tested once each time through
the loop.

• If a certain condition holds, the loop is terminated.

Instruction Types

• Input/Output
 Three different I/O schemes are in current use in PCs:

• Programmed I/O with busy waiting
• Interrupt-driven I/O
• DMA I/O

 In programmed I/O, the CPU usually have a single
input instruction and a single output instruction.

• A single character is transferred between a fixed register and
the selected I/O device.

Instruction Types

Device registers for a simple terminal.

Instruction Types

An example of programmed I/O.

Instruction Types

 The primary disadvantage of programmed I/O
is that the CPU wastes time in a tight loop.

• This is called busy waiting.
• This is OK in embedded processors, but not in a

multitasking machine.
 We can avoid this problem by starting the I/O

and telling the I/O device to generate an
interrupt when it is done.
 In Direct Memory Access (DMA), a chip

connected directly to the bus relieves the CPU
of processing the interrupts.

Instruction Types

A system with a DMA controller.

	Instruction Formats
	Common Instruction Formats
	Instruction Formats
	Common Instruction Formats
	Expanding Opcodes
	Expanding Opcodes
	Expanding Opcodes
	Expanding Opcodes
	Expanding Opcodes
	UltraSPARC III Instruction Formats
	8051 Instruction Formats
	Addressing
	Addressing
	Addressing Modes
	Immediate Addressing
	Direct Addressing
	Register Addressing
	Register Indirect Addressing
	Register Indirect Addressing
	Register Indirect Addressing
	Indexed Addressing
	Indexed Addressing
	Indexed Addressing
	Based Indexed Addressing
	Stack Addressing
	Reverse Polish Notation
	Reverse Polish Notation
	Reverse Polish Notation
	Reverse Polish Notation
	Reverse Polish Notation
	Reverse Polish Notation
	Reverse Polish Notation
	Reverse Polish Notation
	Addressing Modes for Branch Instructions
	Addressing Modes for Branch Instructions
	Orthogonality of Opcodes and Addressing Modes
	Orthogonality of Opcodes and Addressing Modes
	Orthogonality of Opcodes and Addressing Modes
	Orthogonality of Opcodes and Addressing Modes
	Comparison of Addressing Modes
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types
	Instruction Types

