
Leap-frogging Newton’s method

A. BATHI KASTURIARACHI

Department of Mathematics & Computer Science, Kent State University ± Stark Campus,
6000 Frank Avenue, N.W. Canton, OH 44720, USA

email: bathi@stark.kent.edu

(Received 30 May 2001)

Using Newton’s method as an intermediate step, we introduce an iterative
method that approximates numerically the solution of f…x† ˆ 0. The method is
essentially a leap-frog Newton’s method. The order of convergence of the
proposed method at a simple root is cubic and the computational e� ciency in
general is less, but close to that of Newton’s method. Like Newton’s method,
the new method requires only function and ®rst derivative evaluations. The
method can easily be implemented on computer algebra systems where high
machine precision is available.

1. A higher order Newton-type method

Solutions to single non-linear equations that have no solutions in closed form

are of much interest in physics. In these problems we seek methods that lead to

approximate solutions. Newton’s method is often the method of choice for

approximating such solutions. Newton’s method of iteration also appears in

physics in the analysis of the chaotic behaviour of dynamical systems determined

by rational maps [1]. The convergence of the iterates and the rate of convergence
play an important role in the design of new iterative methods. We introduce a leap-

frog Newton’s method for solving the equation f…x† ˆ 0, starting with a reasonable

initial guess. The proposed method has third-order convergence at a simple root

and the computational e� ciency is comparable to that of Newton’s method. It is

well known that Newton’s method (Newton±Raphson method) has second-order

convergence at a simple root [2]. There are higher order methods that allow for
faster convergence. For instance, Halley’s method [3] has third-order convergence,

but requires the second derivative. Similar to Newton’s method, the proposed

method will only require function and ®rst derivative evaluations. In this respect,

the method is easy to implement.

Suppose that the function f …x† has a zero p in the interval ‰a; bŠ and that

f 2 C2‰a; bŠ. Let x0 be the initial guess. If the equation of the tangent line at

…x0; f …x0†† passes through the intercept …x0; 0† we obtain the usual Newton’s
approximation,

x0 ˆ x0 ¡ f …x0†
f 0…x0†

int. j. math. educ. sci. technol., 2002

vol. 33, no. 4, 521±527

International Journal of Mathematical Education in Science and Technology
ISSN 0020±739X print/ISSN 1464±5211 online # 2002 Taylor & Francis Ltd

http://www.tandf.co.uk/journals
DOI: 10.1080/00207390210131786

http://www.tandf.co.uk/journals


Here we have used x0, instead of x1, since this is used only as an intermediate
approximation. The equation of the secant line joining the points …x0; f…x0†† and
……x0; f …x0†† is given by,

y ¡ f…x0† ˆ ‰f…x0† ¡ f…x0†Š
…x0 ¡ x0†

…x ¡ x0†

Assume the secant line meets the x-axis at the point …x1; 0†. This leads to the new
estimate,

x1 ˆ x0 ¡ ‰f …x0†Š2

f 0…x0†‰f …x0† ¡ f …x0†Š

Repeating this process, we obtain a sequence of numbers x1; x2; . . . ; xn; . . . that will
approach the root p. In general, we have the iteration formula:

xn‡1 ˆ xn ¡ ‰f …xn†Š2

f 0…xn†‰f…xn† ¡ f …xn†Š
…1†

where

xn ˆ xn ¡ f …xn†
f 0…xn† …2†

We will refer to equations (1) and (2) as the leap-frog Newton’s method
(®gure 1). It should be noted that the denominator in equation (1) could become
very small quickly, causing round-o� problems. Using the machine precision n we
can stop the iterations when jf…xn† ¡ f…xn†j < 10n¡1. Such a manipulation can
easily be performed on a computer algebra system such as Maple or Mathematica.
The leap-frog Newton’s method is really a combination of Newton’s method
followed by a pseudo-secant method. A method that uses a genuine secant method
®rst, followed by Newton’s method can be found in [4]. Such a method would lead
to a bracketed interval that traps the root. However, a detailed analysis of
convergence is not provided in [4].

The following two propositions will discuss the convergence of the iterates of
the leap-frog Newton’s method.

522 A. B. Kasturiarachi

Figure 1. Illustration of the leap-frog Newton’s method.



Proposition 1. Let f …a†f…b† < 0 and f 2 C2‰a; bŠ and f 0…x†, f 00…x† are non zero
and preserving signs on ‰a; bŠ. Choose an initial approximation x0 2 ‰a; bŠ such that
f …x0†f 00…x0† > 0. Then the leap-frog Newton’s method given by (1) and (2) can be
used to compute the root p of f …x† ˆ 0 to any degree of accuracy.

Proof. We consider the case when f …a† < 0; f…b† > 0, and f 0…x† > 0; f 00…x† > 0
on ‰a; bŠ. The other cases:

. f…a† > 0; f …b† < 0, and f 0…x† < 0; f 00…x† > 0 on ‰a; bŠ,

. f…a† < 0; f …b† > 0, and f 0…x† > 0; f 00…x† < 0 on ‰a; bŠ,

. f…a† > 0; f …b† < 0, and f 0…x† < 0; f 00…x† < 0 on ‰a; bŠ,

. f…a† > 0; f …b† > 0, f …n†…p† ˆ 0 for some n ¶ 1, and f 00…x† ¶ 0 on ‰a; bŠ (mul-
tiple root),

. f…a† < 0; f …b† < 0, f …n†…p† ˆ 0 for some n ¶ 1, and f 00…x† µ 0 on ‰a; bŠ (mul-
tiple root),

can be handled similarly.
For each n, equation (1) can be rewritten as,

xn‡1 ˆ xn ¡ f …xn†
f 0…xn†

¢ f …xn†
f…xn† ¡ f…xn†

xn ¡ xn

µ ¶
…xn ¡ xn†

…3†

Using equation (2) and the Mean Value Theorem we can reduce equation (3) to

xn‡1 ˆ xn ¡
f…xn†
f 0…cn† …4†

for some cn satisfying xn < cn < xn. According to our assumptions (see ®gure 1),

slope of PQ ˆ
f…xn†
xn ¡ p

< f 0…cn† < f 0…xn†

Therefore we obtain the following inequalities:

p ˆ xn ¡ f…xn†
f…xn†=…xn ¡ p† < xn‡1 ˆ xn ¡ f …xn†

f 0…cn†

< xn ¡ f …xn†
f 0…xn†

ˆ xn < cn < xn …5†

It follows that the approximations xn form a bounded monotonic sequence,
therefore its limit, limn!1 xn ˆ p0, exists. The string of inequalities (5) also
show that the sequence cn is bounded and monotonic, so limn!1 cn ˆ c0 exists.
Passing to the limit in equation (4) we obtain

p0 ˆ p0 ¡
f …p0†
f 0…c0†

It follows that f …p0† ˆ f …p† ˆ 0, so that p ˆ p0, which completes the proof. &

The next proposition describes the rate of convergence of the proposed scheme
at a simple root.

Leap-frogging Newton’s method 523



Proposition 2. Let p be a solution of the equation f…x† ˆ 0. Suppose that f…x†,
f 0…x†, and f 00…x† are all continuous for all x in some neighbourhood of p. Assume
f…p† ˆ 0; f 0…p† 6ˆ 0. If x0 is chosen su� ciently close to p, the convergence of the
iterates xn, n ¶ 0, of the leap-frog Newton’s method given by (1) and (2), to the
root p, is cubic.

Proof. We begin with equation (1) and write

xn‡1 ˆ xn ¡
f…xn†
f 0…xn† ¢

1

1 ¡ f…xn†=f …xn†‰ Š

We will choose x0 such that jf…xn†=f …xn†j < 1. Expanding as a series,

xn‡1 ˆ xn ¡ f …xn†
f 0…xn†

1 ‡ f …xn†
f …xn†

‡ f…xn†
f…xn†

³ ´2

‡ ¢ ¢ ¢
" #

…6†

We will appeal to Taylor’s theorem to replace the terms in the square brackets of
equation (6):

f…xn† ˆ f …xn† ‡ f 0…xn†…xn ¡ xn† ‡
f 00…xn†

2
…xn ¡ xn†2

‡ f …3†…xn†
6

…xn ¡ xn†3 ‡ f …4†…cn†
24

…xn ¡ xn†4

where xn < cn < xn. Substituting for xn ¡ xn from equation (2) and simplifying we
obtain

f…xn†
f…xn† ˆ f 00…xn†

2
¢ f …xn†
f 0…xn†2

¡
f …3†…xn†

6
¢

f…xn†2

f 0…xn†3
‡

f …4†…cn†
24

¢
f …xn†3

f 0…xn†4

Substituting the above in equation (6) and collecting terms,

xn‡1 ¡ p ˆ xn ¡ p ¡ f …xn†
f 0…xn†

¡ f 00…xn†
2

¢ f …xn†2

f 0…xn†3

‡ f …3†…xn†
6

¢ f…xn†3

f 0…xn†4
‡ O 1=jf 0…xn†j5

± ²
…7†

Using Taylor’s theorem again,

0 ˆ f …p† ˆ f…xn† ‡ f 0…xn†…p ¡ xn† …15†

‡
f 00…xn†

2
¢ …p ¡ xn†2 ‡

f …3†…dn†
6

¢ …p ¡ xn†3

where p < dn < xn. Reducing further,

¡f…xn†
f 0…xn† ˆ p ¡ xn ‡

f 00…xn†
2

…p ¡ xn†2

f 0…xn† ‡
f …3†…dn†

6

…p ¡ xn†3

f 0…xn†

Finally, substituting the above in equation (7) and collecting terms we obtain

524 A. B. Kasturiarachi



xn‡1 ¡ p ˆ f 00…xn†2

2f 0…xn†2
¡ f …3†…xn†

6f 0…xn†
¡ f …3†…dn†

6f 0…xn†

" #
…xn ¡ p†3 ‡ O jp ¡ xnj4

± ²
…8†

In the limit n ! 1, xn ! p and dn ! p, so that equation (8) reduces to

lim
n!1

jxn‡1 ¡ pj
jxn ¡ pj3

ˆ j3 f 00…p†… †2¡2f …3†…p†f 0…p†j
6 f 0…p†… †2

…9†

Equation (9) proves that the convergence of the sequence xnf g1
nˆ0 to p, is cubic.

Notice the same equation can be used to prove the convergence of the leap-frog
Newton’s method given in Proposition 1 in the case of a simple root. &

The preceding proposition shows the functional iteration method we have
introduced has a faster rate of convergence than Newton’s method. However, it
makes more sense to compare the informational e� ciency and computational
e� ciency of the two schemes.

There are two types of indices that measure the informational e� ciency [5].
They are,

EFF ˆ ¬

d
and ¤EFF ˆ ¬1=d

where ¬ is the order of the method and d is the informational usage, which is
de®ned as the number of new pieces of information required per iteration. For
Newton’s method (with d ˆ 2),

EFF ˆ 1 and ¤EFF ˆ
���
2

p
º 1:4142

For the leap-frog Newton’s method (with d ˆ 3),

EFF ˆ 1 and ¤EFF ˆ 3 ���
3

p
º 1:4422

This shows that the leap-frog Newton’s method has slightly higher informational
e� ciency.

The computational e� ciency measures the amount of computation needed to
arrive at an approximation. The computational e� ciency index [6], is de®ned by,

EI ˆ ¬1=³

where ¬ is the order of the method and ³ is the cost per iteration. The computa-
tional e� ciency index for Newton’s method and leap-frog Newton’s method are
respectively given by,

EI ˆ 21=…1‡³1†; EI ˆ 31=…2‡³1†

where ³1 is the cost of evaluating f 0…x†. A straightforward calculation will show
that if ³1 > 0:7095, the leap-frog Newton’s method is more e� cient. Since the
cost of evaluating a derivative is often much less than that of evaluating a function,
we can conclude that in general, Newton’s method is slightly more computation-
ally e� cient.

2. Examples

The following examples will illustrate leap-frog Newton’s method and compare
it to Newton’s method. The ®rst example demonstrates cubic convergence.

Leap-frogging Newton’s method 525



Example 1. The function f…x† ˆ x3 ¡ 3x2 ¡ 5 has a simple zero on the interval
‰2; 5Š. Based on Proposition 1, we can make x0 ˆ 5:0 our initial guess. Since the

root is solvable by radicals, we can obtain an approximation for the root to any
desired accuracy. For instance, up to 64 decimals we may take the value of the root
to be,

p ˆ 3:425 988 757 361 622 126 076 418 043 532 96

0 077 351 061 466 129 852 522 913 586 974 0

The exact value of the root is,

p ˆ 1

2

3
�����������������������
28 ‡ 12

���
5

pq
‡ 2

3
�����������������������
28 ‡ 12

���
5

pp ‡ 1

Table 1 illustrates cubic convergence of the leap-frog Newton’s method by
demonstrating the tripling of the accuracy with each step. In comparison, New-

ton’s method doubles in accuracy with each step. Here we have recorded the error
jp ¡ xnj for each method. The table was generated by running both methods in
Maple with number of digits set to 256 (Digits := 256).

Table 1 clearly demonstrates cubic convergence of the leap-frog Newton’s

method. It is not entirely fair to compare the values of leap-frog Newton’s method
to that of Newton’s method. After all, a second Newton step can begin while the
leap-frog method completes the calculation. One alternative is to compare a single

leap-frog Newton’s method to that of two Newton’s methods. By doing so the
disadvantage is shifted to the leap-frog Newton’s method, which requires only one
derivative calculation, while two Newton’s method applications require two

derivative calculations! Recall that the informational usage, d, for Newton’s method
and the leap-frog Newton’s method are 2 and 3 respectively. Therefore, it is
reasonable to compare the results of every third Newton’s step to every second leap-

frog Newton step. At this stage the number of pieces of information used is the
same (six) for both methods. In Table 1, if we compare error values corresponding
to n ˆ 3; 6; 9; . . . of Newton’s method to those of n ˆ 2; 4; 6; . . . of the leap-frog

Newton’s method, we see that the proposed method clearly stands out.

The next example will illustrate the convergence of the leap-frog Newton’s
method when Newton’s method fails.

526 A. B. Kasturiarachi

n Newton error Leap-frog Newton error

1 5:740 £ 10¡1 2:504 £ 10¡1

2 1:156 £ 10¡1 2:983 £ 10¡3

3 6:134 £ 10¡3 6:527 £ 10¡9

4 1:860 £ 10¡5 6:859 £ 10¡26

5 1:718 £ 10¡10 7:959 £ 10¡77

6 1:467 £ 10¡20 1:244 £ 10¡228

7 1:069 £ 10¡40 0
8 5:675 £ 10¡81 0
9 1:599 £ 10¡161 0

Table 1. Comparative rates of convergence: Newton’s
method versus leap-frog Newton’s method.



Example 2. The function f …x† ˆ x1=3 has a simple root at p ˆ 0. This example
is often used as a pathological example to illustrate a situation in which the
Newton’s method fails (table 2). However, the leap-frog Newton’s method
converges to the root slowly (º 0:5 order). Notice in this example the conditions
of Proposition 1 are not met.

In conclusion, the leap-frog Newton’s method introduced above has third-
order convergence at a simple root with comparable computational e� ciency.
Generalization of the method, modi®cations at multiple roots, a higher order
iteration method involving the curvature at a point, and other examples of
pedagogical interest will be detailed in another article in preparation [7].

Acknowledgments

I am grateful to the Professional Activities Advisory Committee of Kent State
UniversityÐStark Campus for providing me with a load release to complete the
writing of this paper.

References
[1] Barnsley, M., 2000, Fractals Everywhere, 2nd edn (Academic Press).
[2] Burden, R. L., and Faires, J. D., 1997, Numerical Analysis, 6th edn (Brooks/Cole).
[3] Ralston, A., 1965, A First Course in Numerical Analysis (McGraw-Hill).
[4] Demidovich, B. P., and Maron, I. A., 1981, Computational Mathematics (English

translation) (Mir Publishers).
[5] Traub, J. F., 1982, Iterative Methods for the Solution of Equations (New York:

Chelsea).
[6] Ralston, A., and Rabinowitz, P., 1978, A First Course in Numerical Analysis

(McGraw-Hill).
[7] Kasturiarachi, A. B., 2002, Higher Order Function Iteration Methods (in preparation).

Leap-frogging Newton’s method 527

n Newton xn Leap-frog Newton xn

1 72.0 0.107 243 151 757 945 9
2 4.0 70.035 119 987 560 042 18
3 78.0 0.011 501 093 598 977 81
4 16.0 70.003 766 378 155 638 774
5 732.0 0.001 233 413 526 217 517
6 64.0 70.000 403 918 264 122 981 3
7 7128.0 0.000 132 275 153 972 448 3
8 256.0 70.000 043 317 467 697 146 94
9 7512.0 0.000 014 185 604 411 272 93

10 1024.0 70.000 004 645 501 762 015 047

Table 2. A pathological example: Newton’s method versus leap-
frog Newton’s method.


