
Lecture 15—Dimensional Analysis Revisited 
 
Ok, so last time we managed to explain that there’s a reason the 
Moody diagram plots friction factor as a function of Reynolds number 
and relative roughness. Is dimensional analysis really that useful, 
though?  
 
YES. In addition to providing fewer variables and getting rid of units, 
dimensional analysis can suggest ways of looking at your data that 
provide more insight than you might expect. 
 
Here are two examples: 
 
Suppose that we did some experiments on drag force in a wind 
tunnel. Basically, we stuck spheres of known diameter in the tunnel 
and threw various wind speeds at them, then determined the force of 
drag exerted on the sphere. Through the judicious use of HeaviAir™, 
we were also able to vary the fluid density quite a bit. Lastly, for 
reasons unknown even to us, we chose to do the whole thing in 
English units. For the works, µ = 4 x 10-7 lb·sec/ft2. 
 
Test V (fps) D (ft) ρ 

(slug/ft3) 
Fd (lb) 

1 0.18 0.1 0.00222 2.82x10-7 
2 1.8 0.1 0.00222 1.326x10-5 
3 18 0.1 0.00222 0.001326 
4 180 0.1 0.00222 0.1326 
5 100 1.8x10-4 0.00222 2.82x10-7 
6 100 0.0018 0.00222 1.326x10-5 
7 100 0.018 0.00222 0.001326 
8 100 0.18 0.00222 0.1326 
9 100 1.8 0.00222 2.82 
10 100 18 0.00222 565 
11 100 0.1 4x10-6 1.572x10-4 
12 100 0.1 4x10-5 7.38x10-4 
13 100 0.1 4x10-4 0.00738 
14 100 0.1 0.004 0.0738 
15 100 0.1 0.04 0.1572 
16 100 0.1 0.4 3.14 



 
We can plot all sorts of plots relating each independent variable to the 
dependent variable, all of which tell us something about how drag 
force is related to velocity, diameter, and fluid density. However, let’s 
try a little dimensional analysis. 
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and therefore 
 
c3 = 1 – c4 
c1 = 2c3 + c4 = 2(1 – c4) + c4 = 2 – c4 
c2 = -c1 + 4c3 + 2c4 = -2 + c4 + 4(1 – c4) + 2c4 = -2 + c4 + 4 – 4c4 + 
2c4 = 2 – c4 
 
from which we get, 
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and finally, 
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which should look substantially more familiar. Note that this provides, 
effectively, a second pi group—one we’ll call drag coefficient. See? 
Dimensional analysis can also be used to suggest ways of looking at 
your data that make more sense than just plots of one independent 
variable against the dependent variable. 



 
Ok. Remember how I explained last time we spoke about how one of 
the biggest problems in dimensional analysis is just knowing which 
variables to choose? This is a big deal. Sometimes we can combine 
variables together (as in the case with kinematic viscosity), and 
sometimes we can eliminate a few by making some simplifying 
assumptions or through some knowledge of fluid mechanics. Here’s a 
hairy real world example (my dissertation!) 
 
Suppose we have: 
 

 
 
 
The following variables may (or may not) be important to our 
dependent variable, ℓ. 
 
h1 initial impoundment height 
h2 initial water depth 
h bore height 
U flow velocity 
c wave celerity 
f friction factor 



S slope 
D particle diameter 
CSF  shape factor 
ρ fluid density 
ρs sediment density 
µ fluid viscosity 
g gravity 
w settling velocity 
 
How on earth do we winnow this list down? We can start by saying 
that h is a function of h1 and h2 (this is from something called the 
“dam-break problem”), so we only need h. We can define γ'=g(ρs-ρ), 
which allows us to get rid of any two of the three (and add in γ'); I 
choose g and ρs. w=f(D, CSF, γ'), so I only need w, and can be rid of 
the others. Next, I know from fluid mechanics that R is really big here. 
So big that the flow is fully turbulent, and therefore viscosity is 
unimportant to the system. µ gets voted off the island. Now it’s time 
for my experimental assumptions. I chose to make slope, friction 
factor, and fluid density constant. This substantially reduces the list. 
Now ℓ=f(h, U, w). From here it doesn’t take a rocket scientist to figure 
out two obvious pi groups, ℓ/h and w/u. The important thing to note is 
that it didn’t have to be that way. I could have chosen to make a 
Froude number (a pretty obvious thing for bores), 

gh
U , and a 

“particle” Froude number 
gl
w . Plotting these, however, doesn’t really 

aid our understanding of the problem any. We don’t get any coherent 
trends, so these pi groups don’t really work for us. 
 
Unfortunately, this isn’t the only way to approach this problem. Let’s 
try a force ratio instead. The forces important to this problem are the 
drag force on the particle (we hope) and the weight of the particle. 
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so we could make a force ratio: 
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Nice! But, we’re still stuck trying to normalize ℓ to something. All sorts 
of length scales come to mind, and only by seeing which ones aid our 
understanding of the data can we figure out which one to use. This is 
dimensional analysis at its best (and worst). 
 


