
Lecture 18—Low R* and High R* Initiation of Motion  
 
We noted last time that Shields doesn’t have data for boundary 
Reynolds numbers lower than 2. Shields indicated that for R*<2, θ 
should be inversely proportional to R*: 
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rearranging this yields: 
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where k2 is a constant incorporating τ0 (remember this is constant). 
The point is that this suggests that τc is independent of grain size for 
grains totally enclosed in the viscous sublayer.  
 
Actual experiments show that this isn’t exactly the case. Here’s a plot 
of Ξ  vs. θ for low R*. If Shields is right, the low R* part of the graph 
(on the left) should fall with a slope of –2/3 given these axes. If you 
look, though, it only falls with a slope of about –1/3, suggesting that θ 
is still a weak function of grain size. In any case, the density 
difference becomes more important than grain size for these sizes 
(for quartz spheres, this is below about 0.167 mm). 
 
 

 
 



What happens for large R*?  
 
In all truth, there isn’t much data for high R* flows. This is because It’s 
hard to put large objects in a flume, and also because the assumption 
of a logarithmic velocity profile breaks down for large objects 
(experimentally, this has been determined to happen at around 
D/ks=6 to 10). Without a log profile, it’s very hard to estimate u* in a 
flume! 
 
For R*>600 (quartz spheres bigger than about 7mm), u* is directly 
proportional to w. In math, 
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So θ is just a function of CD! This helps to explain why motion 
happens over a range of θ; CD is quite variable as a non-spherical 
particle rotates. 
 
Unfortunately, when we move to natural rivers this utterly and 
completely doesn’t work. It turns out that people who work in natural 
rivers need to be concerned with “general” transport on the river, and 
use D50 for the grain size in Shields’ criterion. One of the big reasons 
that the analysis falls down is that the Shields diagram was produced 
for spheres (or pretty spheric sands) moving on a bed of similarly 
sized grains. If the bed grains are significantly smaller or larger than 
the moving grain, the shear stress required for motion changes. 
 



 
 
 
Effectively, this changes α: 
 
 
 
 
 
 
 
 
 
 
 
So, it turns out that we need to know the D50 of both the surface and 
the subsurface grains. Andrews (1983, 1984) gives a relationship for 
θ based on these: 
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We can rearrange this using Shields’ equation for θ to get τcr: 
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Since Andrews’ work other studies have produced other values for 
the exponent of D50, sub ranging from 0.9 to 6.0, expressing differences 



in natural rivers, but all verifying the importance of the grain size of 
the subsurface layer. 
 
As a result, it’s actually easier to move large grains on a bed of 
smaller grains than to lever smaller grains up and out of the holes 
created by large bed material. 
 
Well, one more thing. In his original experiments, Shields noted that 
the bed became rippled almost immediately when movement began. 
You can imagine that this will affect the local flow regime, and will 
change the shear stress required for motion. This is because shear 
stress on the bed comes in two flavors, shear stress from the grains 
themselves (skin friction shear stress), and shear stress from the 
bedform (form drag). We’ll be discussing the results of this for the 
next few lectures. 
 

 


