
Lecture 21—Suspended Sediment Transport 
 

We’re interested in expressions for qs, the rate of sediment 
transport. This is often divided into two segments, bedload and 
suspended load. As it turns out 50-99% of a river’s sediment moves 
as suspended load. If we wanted to know the amount of sediment 
moving through a reach in a given year (maybe because we were 
worried about how much sediment was ending up in a reservoir), 
we’d be very interested in suspended load.  

One problem is that we can’t just measure the amount of 
suspended load. Suspended load has a distribution, just like velocity 
does, so the same amount of sediment isn’t being carried throughout 
the water column. Often, rivers are very deep, so we have to estimate 
the amount of suspended load from a few samples. Now, if we knew 
the distribution of suspended load in the water column, we could 
determine the sediment transport rate.  

So, how to determine the concentration of suspended sediment 
with depth? Basically, for a steady concentration profile, an 
equilibrium has been reached between the flux of sediment down (by 
gravity) and the flux of sediment up by diffusion. 

 

 
 
 
 

 



We have an expression for the flux of material down: 
 

cwp=flux  
 
So all we need is an expression for the flux up, and we’ll be done! 
This seems easy; what drives the flux up is diffusion (the same force 
that moves ink evenly throughout a jar of water, for instance). We 
know of lots of examples of diffusive processes—examples include 
heat flow and groundwater flow. Mathematically, these all look the 
same. Flux is proportional to gradient, with the coefficient of 
proportionality being some material property of the medium. Like this: 
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where the derivative is the gradient of interest (temperature change 
for heat, hydraulic head for groundwater) and k is the coefficient of 
proportionality (specific heat for heat, permeability for groundwater). 
In our case, the gradient is the change in sediment concentration with 
depth, and the coefficient is basically unknown: 
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where ε is some property of the fluid called the diffusion coefficient 
(the minus sign is just to make sure we know the flux is against 
gravity). 
 Now we’re stuck. We have no means of determining ε without 
rather lengthy and confusing experiments. However, once again 
Osbourne Reynolds comes through in a pinch, with the following 
analogy. 
 Reynolds reasoned that the diffusion coefficient should act very 
like another diffusion equation we’ve dealt with; the diffusion of 
momentum. We have a statement about how momentum is 
transmitted in a laminar fluid: 
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and from a long time ago, we have a statement for the way 
momentum is transmitted in a turbulent system (which is what we’re 
really interested in anyway, since turbulence is what’s driving this 
diffusion): 
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where εm is called the turbulent eddy diffusivity or kinematic eddy 
viscosity (because it has the form of a kinematic viscosity). This is 
related to the length scale over which eddies transport momentum 
(which is in turn affected by the viscosity; you get the drift). Reynolds’ 
brilliant, twisted, mad insight was this; the diffusion coefficient (that 
says how suspended sediment is transported) is proportional to the 
eddy viscosity (that says how momentum is transported).  
 
 mβεε =  
 
where β is a proportionality constant Reynolds claims is about equal 
to 1. 
 We’re actually worse off than we were before. Instead of one 
unknown (ε), we’re stuck with two (β and εm). On the other hand, this 
allows us all sorts of fun if only we knew how εm varied with depth 
(and if β really acts like Reynolds says it does). 
 There are lots of choices for how εm varies with depth:  
 

 
 
 
 
 
 



Let’s think about it, though. We know how τ varies in a flow: 
 

 
 
so we have, 
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and, from the law of the wall: 
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so that, 
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Combining our two equations for τ, 
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Which yields: 
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which is basically a parabola. NOW, if ε=βεm, then, 
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so at long last we can make the balance we wanted: 
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rearranging, 
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and substituting, 
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This is rather unpleasant. Let’s simplify. Take: 
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Our equation simplifies to: 
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Integrating, 
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And we’re back to square one. We still have an unknown (c0), and we 
can’t pick it at y=0 by the terms of our derivation for εm. We could, 
however, choose it at some arbitrary level, y=a. This results in: 
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which is called the Rouse Equation.  
 There are several things we can do with this. One is just a 
clarification; the reason we couldn’t pick c0 at y=0 is that εm goes to 0 
(it also does this at the surface). To solve the surface inaccuracies, 
some people choose: 
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The second thing is that z is effectively the slope of log(c) vs. 
log(

y
yd − ). The neat thing is that zβ=P, and β≈1. SO, if this all works, 

we have a means of a) determining concentration profile (by 
determining the Rouse number of the grain size in question, then 
getting a single reference value), and b) checking the validity of our 
assumption that β=1. Here, 
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Experimentally, this has turned out to be 0.93<β<1.10 for sands and 
silts.  
 This still isn’t great, since we need a reference concentration to 
make the whole thing work. As a simplification, though, near the bed: 
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This results in a much more solvable equation for c, resulting in: 
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So, what are some results of this? 
 
If z=0, c=constant 
 

 
 
 
If z=1, c=y-1 

 

 
 
 
 



for z>1 bedload dominates quickly 
 

 
 
 
 
 
 


