
Lecture 27—An aside on hyperconcentrated flows 
 
Today I’d like to talk for a bit about hyperconcentrated flows. You 
remember these—they include debris flows, mudslides, and the like. 
Although we don’t have to worry overly about hyperconcentrated 
flows in Ohio rivers, in some rivers, particularly those based on loess 
or volcanic terrains, hyperconcentrated flows are the major way that 
sediment is moved through the river. Way back in Lecture 1 I claimed 
that we wouldn’t be talking about hyperconcentrated flows. This was 
for a reason—when we talked about velocity profiles in rivers, I 
wanted to be able to assume that water is a Newtonian fluid. This led 
us to an expression for viscosity in water, which we later amended to 
include turbulent viscosity. Here’s the problem with 
hyperconcentrated flows—they don’t act like Newtonian fluids. 
Instead of deforming as soon as shear is applied, they don’t deform 
at all until a critical value of shear is reached. 
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See? Instead of just 

dy
duµτ = , there’s another factor, k, the yield 

strength of the fluid. Look back to Lecture 3—it looks just like the line 
I drew for a Bingham plastic. Soooo, what are the consequences of 
this change? 
 
The biggest is that the velocity profile changes dramatically. 
Remember that: 
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and that shear stress varies linearly in the flow, from a maximum of τ0 
at the base (that’s ρghS) to 0 at the surface. Sooo, 
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Now, if we combine this equation with the definition of a Bingham 
plastic, we get: 
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which we can integrate: 
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The curious thing here is that when 
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gradient—above this point the velocity is constant because the yield 
strength is greater than the shear stress. What develops, then, is a 
rigid plug that scoots along on top of the flow. This plug is capable of 
moving very large objects, and is one reason debris flows often have 
huge boulders in them, or forests of trees.  
 
For completeness sake, the maximum velocity occurs at the base of 
the rigid plug, and is defined as: 
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and the average velocity is: 
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Here’s a question, though—can debris flows become turbulent? The 
answer is yes, they can. The problem is that we can’t use just 
Reynolds number anymore. The problem is that the Reynolds 
number required for turbulence will increase with increasing yield 
strength, because that rigid plug will keep a lid on turbulent effects. 
We need yet another number that talks about the relative importance 
of yield strength vs. viscous stress. This number is called Bingham 
number and looks like this: 
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The Reynolds number that marks the transition from laminar to 
turbulent flow is defined by taking the ratio of Reynolds to Bingham 
number: 
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The transition from laminar to turbulent flow occurs when this number 
(called Hampton number) is about equal to 1000. 
 
Here’s an example of working with debris flows. Consider a debris 
flow 5 meters thick, moving down a slope of 0.01. The bulk density is 
2200 kg/m3, the yield strength is 300 Pa, and the dynamic viscosity is 
100 Pa·s. Is the flow turbulent or laminar? 
 
What is the thickness of the rigid plug? 
 
What’s the maximum velocity? 
 
When will it stop moving? 


