
Lecture 11—Infiltration 
 
 
When I started the last lecture, I said we had to worry about the fate 
of rain—some of it ended up evaporating back into the atmosphere, 
but some of it ended up hitting the ground. What I’d like to talk about 
today is how we find out how much of it sinks in, and how much of it 
runs off. This part of the hydrologic cycle provides the critical link 
between precipitation and runoff, two major themes of hydrology. 
 
So it sort of sucks that we don’t have a better linkage. Intuitively, we 
can talk about what should happen, and we can even write an 
equation that mimics what we said intuitively, but bear in mind that 
the process our model says should be happening probably doesn’t. 
 
So, intuitively, what happens? Mental experiment time—is rain more 
likely to sink into sand, or into clay? This suggests that some material 
property of the ground affects how fast rain can sink in. The material 
property in this case is permeability, and it’s a function not only of 
how many void spaces there are in a soil, but also how connected 
they are and how large they are. Typically permeability is determined 
empirically, with things like constant head tests. What I’m getting at, 
though, is that if a soil has high permeability, more water will sink in, 
and low permeability means more runoff. 
 
It gets worse, though. Many of the “connected spaces” are fairly 
fragile, and one problem is that the impact energy of raindrops can 
destroy that shallow structure. Also, water that can’t sink in sits 
around on the surface, so more water falling from above has no place 
to go but into the holding area. This decreases the surface area 
available for infiltration. Another problem is like arteriosclerosis—
water actually attaches itself in a thin layer around every grain in the 
soil, so that the size of the void spaces actually shrinks as the soil 
gets wetted. Clearly, then, there will be some time dependence on 
how much water sinks in vs. runs off. 
 
Horton (1940) came up with an equation that satisfies our intuitive 
notions about how all this should work. Here’s the equation: 
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where f is the infiltration capacity (in in/hr), f0 is the initial infiltration 
capacity, fc is the final infiltration capacity, and k is an empirical 
constant that says something about how long it takes for rain to force 
the soil from its initial to its final infiltration capacity. This has since 
been experimentally shown to be an effective gauge of infiltration.  
 
Let’s have an example, shall we? The initial infiltration capacity of a 
watershed is estimated as 1.5 in/hr, and the time constant taken to be 
0.35 hr-1. The equilibrium capacity is estimated as 0.2 in/hr. What are 
the values of f at t = 10 min, 30 min, 1 hr, 2 hr, and 6 hr, and what’s 
the total volume of infiltration over the 6 hour time period? 
 
From the Horton equation, we have: 
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Substituting in values of t yields: 
 
t  f 
1/6  1.43 
1/2  1.29 
1  1.12 
2  0.85 
6  0.36 
 
Which looks like the graph here. The volume of water can be found 
by taking the definite integral under the curve from 0 to 6 hours. Here 
the integration is easy, and turns out like this: 
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plugging and chugging yields an answer of 4.46 inches over the 
watershed.  
 
All is not sunny in the Horton equation, however. It assumes that 
rainfall exceeds infiltration rate, so that there must be ponding at the 
surface and reduction in infiltration rate with time. If, however, the 



rainfall intensity doesn’t exceed the rainfall rate, there’s no need to 
drop the infiltration rate. As a result, some researchers have 
suggested that infiltration capacity should vary with the cumulative 
infiltration volume and not with time. Unfortunately, this requires 
iteration between the equation for cumulative infiltration volume 
(which we got in the example) and the Horton equation. As a result 
this technique is mostly used in computer simulation. 
 
What if we didn’t want to do all this messing around? The dirt 
simplest way of measuring infiltration is purely empirical. We could 
simply assume that infiltration is constant during the whole rainfall 
period, and tune a constant (call it φ) that relates how much water ran 
off for a given rainfall. The constant would be useable to estimate 
runoff for future events. Here’s an example: 
 
Use the rainfall data listed to determine the φ index for a watershed 
having a total runoff of 4.9 inches for this storm. 
 
t (hr)  rainfall (in/hr) 
0-2  1.4 
2-5  2.3 
5-7  1.1 
7-10  0.7 
10-12  0.3 
 
The first step is to make a hyetograph from the data, as shown in the 
graph. All we need after that is to find the line level that allows the 
“runoff” part of the hyetograph to be equal to exactly 4.9 inches. In 
math, the way to do this is: 
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You can either solve this equation directly, or go ahead and find φ by 
trial and error. In this case, assuming φ = 1.5 in/hr yields 2.4 inches 
of runoff, which is too low; assuming φ = 0.5 in/hr yields 9.0 inches of 
runoff, which is too high. The answer for this is φ = 1.0 in/hr.  
 
 
 
 



As a final thought, Horton originally wrote that all this surface runoff 
would take the form of a sheet flow whose depth could be 
measured—this sheet flow would continue downslope until a stream 
was encountered.  


