
Lecture 24—Floods and flood frequency 
 
One of the things we want to know most about rivers is “what’s the 
probability that a flood of size x will happen this year? In 100 
years?” There are two ways to do this—empirically, and 
parametrically. 
 
First, empiricism. Let’s take a bunch of data. For now, we’ll take 
flood data—the maximum flood for each year for some number of 
years: 
 

Year Flow, cfs
1945 2290 
1946 1470 
1947 2220 
1948 2970 
1949 3020 
1950 1210 
1951 2490 
1952 3170 
1953 3220 
1954 1760 
1955 8800 
1956 8280 
1957 1310 
1958 2500 
1959 1960 
1960 2140 
1961 4340 
1962 3060 
1963 1780 
1964 1380 
1965 980 
1966 1040 
1967 1580 
1968 3630 

 
 
To plot this data empirically, we need to order these according to 
rank. That is, the highest flow comes first, and then the next 
highest, on down. 
 

Year Flow, cfs Rank 
1955 8800 1 
1956 8280 2 
1961 4340 3 
1968 3630 4 
1953 3220 5 



1952 3170 6 
1962 3060 7 
1949 3020 8 
1948 2970 9 
1958 2500 10 
1951 2490 11 
1945 2290 12 
1947 2220 13 
1960 2140 14 
1959 1960 15 
1963 1780 16 
1954 1760 17 
1967 1580 18 
1946 1470 19 
1964 1380 20 
1957 1310 21 
1950 1210 22 
1966 1040 23 
1965 980 24 

 
 
Incidentally, you can get Excel to do this for you. Select the data, 
then go to Data|Sort, and it will order all the data! From here, use 
the formula: 
 

m
nT 1+

=  

 
Where T is the recurrence interval, n is the number of years in the 
record, and m is the rank. Thus, for our data: 
 

Year Flow, cfs Rank T 
1955 8800 1 25.00 
1956 8280 2 12.50 
1961 4340 3 8.33 
1968 3630 4 6.25 
1953 3220 5 5.00 
1952 3170 6 4.17 
1962 3060 7 3.57 
1949 3020 8 3.13 
1948 2970 9 2.78 
1958 2500 10 2.50 
1951 2490 11 2.27 
1945 2290 12 2.08 
1947 2220 13 1.92 
1960 2140 14 1.79 
1959 1960 15 1.67 
1963 1780 16 1.56 
1954 1760 17 1.47 



1967 1580 18 1.39 
1946 1470 19 1.32 
1964 1380 20 1.25 
1957 1310 21 1.19 
1950 1210 22 1.14 
1966 1040 23 1.09 
1965 980 24 1.04 

 
 
All that’s left is to plot T on the horizontal axis and Flow on the 
vertical, and shoot a best-fit line through the whole mess. Oh, and 
typically we plot it on log-log paper: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By extrapolating the trend line, you can determine the “100-year” 
or “500-year” flood.  
 
What is actually meant by “100-year flood,” by the way, is that it 
has a 1% chance of happening every year, not that it only happens 
every 100 years. Here’s a nifty formula for determining frequency 
or probability rather than recurrence. 
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In other words, 

T
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Here’s the basic problem, though. Especially with small data sets, 
each new data point will significantly alter the rank of all the other 
points, and therefore change the whole curve. As a result, it’s often 
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easier to perform this analysis parametrically, with a few important 
statistics. Let’s talk. 
 
Let’s consider the height of every person in the room. The result of 
this (assuming we have adults and we’ve got enough people) is an 
oddly shaped curve. Most everyone fits between about 150 cm 
and 190 cm, with a pronounced hump around 170 cm or so. 
However, the distribution tails off to include the Shaq’s and the 
Billy Bartletts of our population. This curve is called many things, 
and is of vital importance to lots of the natural world. It’s called the 
normal distribution, the bell curve, the Gaussian distribution, or the 
binomial distribution (after an easy way to create it). Turns out lots 
of natural distributions look like this—especially if there’s some sort 
of control making an “average.” To talk about these distributions, 
we have a number of parameters that describe normal 
distributions. Here they are. 
 
Average (aka 1st moment)—the average value of all the individual 
values. 
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Variance (aka 2nd moment)—the average of the difference 
between each individual and the mean. This is a measure of the 
spread of the data 
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where the square is placed to ensure a positive number. To regain 
the units of the mean (e.g. the units of variance in our height 
example are cm2), we have  
 
Standard deviation—which is just the positive square root of 
variance. 
 
At this point we need to make a little quibble. Whenever you 
measure a group of objects, like we just did with height, you are 
taking samples from some larger population. Although your sample 
may approximate the whole population, it may not. Statisticians, 



then, draw a distinction between the mythic population statistic and 
the measurable sample statistic. Mean, for example, is a 
population statistic; average is a sample statistic. As defined, we 
have sample standard deviation, and we abbreviate it s. 
Population standard deviation is defined with N in place of n-1, and 
is abbreviated σ. Most of the time, however, geologists blithely 
ignore this distinction, and refer to average as mean, and use σ for 
sample standard deviation. It’s all good. 
 
These two parameters (mean and standard deviation) suffice to 
explain the normal curve. The equation for a normal curve is: 
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Oh, right, η is the population mean. 
 
Just as it’s difficult to use functions of xn because they’re hard to 
compare, so are normal distributions hard to look at. As a result of 
the whole xn thing we came up with a set of skewed axes (log 
paper) that make functions of xn look like straight lines. So it is with 
the binomial distribution. If you take one and sum the components 
rather than plotting them like a histogram you get something called 
a “cumulative frequency chart” or s-curve. We can also make 
skewed axes that plot s-curves as straight lines. This axis is called 
a probability axis. Plotting on probability paper makes things 
easy—normal distributions plot as straight lines, and determining 
standard deviation is easy—it’s the distance on the line from 50% 
to 84% (or from 50% to 16%).  
 
This explains the normal curve nicely, and it would be nice if that 
were all there was. But there’s more. It turns out that there are a 
number of curves called quasi-normal curves. These involve two 
other statistics—skewness and kurtosis. We’ll talk about these 
now. 
 
Skewness (aka 3rd moment)—this is a measure of “lean” on the 
curve. Curves that lean to the left are positively skewed, and those 
that lean to the right are negatively skewed.  
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Notice that this effectively takes the ratio of standard deviation to 
standard deviation, but allows for a sign (because it’s cubed), thus 
allowing for contributions on one side to outweigh those on the 
other, and force the parameter to be positive or negative. Note that 
a normal distribution has a skewness of zero. 
 
A sidebar on median. Median ( x̂ ) is like mean in that it shows 
something about where the bulk of the data lie. It is determined, 
however, by finding the middle value of the distribution, rather than 
averaging all values. That is, if we take our heights from lowest to 
highest, and there’s 11 of us in the room, the 6th value counting up 
(or down) is the median value. Why do we care? In a normal 
distribution, the mean and median must lie at the same point. If the 
median is to the left of the mean, the bulk of the data is also to the 
left of the mean, and the distribution is positively skewed. There 
you have it. 
 
Kurtosis (aka 4th moment)—this somewhat nebulous statistic says 
something about how “peaked” the curve is. High values of 
kurtosis represent curves more peaked than normal, and low 
values flatter. 
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Note that because these parameters are themselves only 
recombinations of average and standard deviation, effectively 
these are only variants of the normal curve.  
 
Why do we care about all this? It turns out that there is no 
particular reason why flood data should be normally distributed, so 
we may have to use some OTHER distribution. What do I mean by 
this? Remember that I gave you a mathematical statement of the 
normal distribution: 
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Meaning that if you’re given η and σ you can work out the 
probability of an event yourself. There are other distributions, 
though—one of the most popular in flood analysis is the gamma-3 
or Pearson 3 distribution: 
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although the extreme value distribution (EV1 or Gumbel) is often 
used as well: 
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To use these, simply determine your statistical parameters 
(namely mean and standard deviation), then convert these to the 
parameters used in the distributions. Here: 
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While I’m here, it’s worth talking about Gamma 3 and parameters. 
Most probability distributions (and there are lots) have two or three 
parameters that are in turn functions of the elementary statistics 
we talked about. In Gamma 3, α is called a shape factor, and β is 
called a scale factor. This is because varying β just stretches the 
function on the y axis, but changing α changes the shape of the 
distribution as a whole. {graphs} You could also include a 
parameter that moves the whole distribution back and forth on the 
x-axis—that would be a location parameter. The important thing is 
that if you read about some other distribution, you may be able to 
determine (or be told) what the parameters do. 
 



 
 
 
Enough about this. Back to floods. One quick solution would be to 
take the average and standard deviation of your flood data (or the 
log of your flood data) and use these theoretical curves to estimate 
peak flow instead. For example, using the data above, I got: 
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So 97.1=α , 1410=β . 


