
Lecture 25—Flood routing 
 
We spent some time last week chatting about flood frequency, and 
estimating flood peak. One of the things we’d most like to know 
about, though, is something about the dynamics of a flood wave as 
it passes through a watershed. This is especially important in large 
river systems because it can help predict flood peaks—this might 
help with things like knowing how high you have to sandbag, or 
enable reservoir managers to know how much to draw down 
reservoirs. 
 
In fact, flood control dams are a great place to start. Here in Ohio 
most of our dams are for water supply—a mill needs water either 
for some industrial process or to generate power. But in California 
and other arid environments, most dams are put up for flood 
control. These dams are designed simply to hold onto water for a 
little while, and release it slowly. This results in a hydrograph with 
a lower peak, but the same area as the undammed watershed 
{figure}. An aside—there are flood-control dams in the world that 
actually alter the area under the hydrograph. In Oman, a basically 
desert country, crops are grown only on the north coast (Al 
Baitnah), a region separated from the arid interior by a range of 
mountains. Overproduction has resulted in salinization of a number 
of important wells in the Al Batinah region, and loss of cropland. 
Rain, when it falls, falls heavily in the mountains, and flash floods 
run down wadis to the sea, so that water is lost for irrigation. 
However, a number of flood control dams have been placed on 
these wadis, but not with an eye to reducing the hydrograph 
peak—instead in intent is to cause some of the water to soak into 
the ground and recharge the failing wells (and yes, it’s working). 
 
Basically, a flood control dam is a lot like the linear reservoir we 
talked about earlier. Water is held in storage for some time 
(controlled by the dam manager) before being released. This 
results in a quick and easy equation for dams: 
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Take a look {example problem}. 
 
The process of predicting the attenuation of a flood wave as it 
travels downstream, or through a control structure, is called flood 



routing. There’s two different ways people attempt to do it—one 
uses our basic hydrologic continuity equation ⎟
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balance inflow, storage, and outflow, and then governs the 
relationship between outflow and storage through some form of 
storage-discharge relationship. This is called hydrologic routing. 
The other method uses the continuity equation for open channel 
flow ( )VAQ =  and a statement about the conservation of momentum 
for unsteady flow. This is called hydraulic routing. Hydraulic routing 
is generally more complex than hydrologic routing, and is often 
solved using finite difference or finite element rather than explicitly. 
 
For natural rivers the attenuation process is more complex than for 
dams. Take, for example, the 1993 Upper Mississippi floods. We 
know that great portions of the Upper Mississippi valley were 
flooded, yet by the time the flood reached New Orleans, it wasn’t 
anything like as bad as in Iowa. Why is that? It’s because of 
storage within the river system itself. When flow is rising, there’s a 
parcel of storage within the reach between inflow and outflow 
because of the lag between inflow increase and outflow increase. 
This is called wedge storage. The elevated reach of water during 
the flood is called prism storage, and finally as the flow falls, 
there’s wedge storage while the outflow is greater than the inflow. 
So, if you had a routing method that allows for wedge storage, you 
could predict the flow at points downstream, and see how the flood 
wave attenuates. 
 
 Several such methods exist. Two we’re going to talk about 
(because they show up in papers a lot) are the Muskingum method 
and the Runge-Kutta methods. 
 
Muskingum  
 
 The Muskingum method uses the basic hydrologic continuity 
equation we’ve used before, and a storage term that depends both 
on the inflow and outflow: 
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where x is a weighting factor between 0 and 0.5 that says 
something about how inflow and outflow vary within a given reach, 
and K is the travel time of the flood wave. 
 



For the case of a linear reservoir like we talked about, S depends 
only on outflow, so x=0 and S=KQ. In a perfectly smooth channel, 
x=0.5 and S=0.5K(I+Q), which results in simple translation of the 
wave. Typical streams have values of x=0.2 to 0.3. 
 
 The routing procedure itself uses the finite difference form of 
the storage-discharge relationship: 
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which can be rearranged to produce the outflow equation: 
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Note that K and ∆t must have the same units, and that 2Kx < ∆t ≤ 
K for numerical accuracy, and that C0+C1+C2=0. The routing 
procedure is accomplished successively, with Q2 becoming Q1 of 
the successive calculation. {example}. 


