
Lecture 5—An interlude on significant figures and a little calculus 
 

Ok, you’ve all heard about them, you’ve all DONE them, but somehow we 
never seem to use them. I’m speaking, of course, of significant figures. 
Eeeew. Well, they’re a fact of life, so let’s begin. 
 
Basically, a significant figure is a digit that conveys information in a 
number, rather than a placeholder. For example, in the number 0.0064, the 
zeros are just holding the places for the actual significant numbers, the 64. 
Note that in scientific notation this number would be compressed to nothing 
but its significant digits and be written 6.4 x 10-3. Note also that the zeros in 
between significant figures are also significant, so 0.00604 has three 
significant digits, not two (and this is borne out by scientific notation, which 
would write that 6.04 x 10-3.) 
 
[Practice with significant figures: 0.0000065, 0.00000650, 10.00000650, 
0.08000650] 
 
Multiplication & Division 
 
The guiding principle is that you can’t have more significant figures in the 
answer than in the measurements, so if you had, say, a rectangle with 
sides 680.8 ft and 75.3 ft the area is 51,300 ft2, not 51,264.24 ft2. Note, 
however, that this is 1.18 acres, because significant figures are not unit 
dependent. Back in the day, it was considered a good thing to recalculate 
significant figures after every computation, simply because it saved time. 
Now, with a calculator, like you care if you’re multiplying 6 into 3 or just 3 
into 3. You’re better off waiting to the end (this is vital for things like sum-of-
squares), but if you have to do it by hand, you might remember the old-
school way.  
 
Addition & Subtraction 
 
You’d think this would be simple, right? You’d think it just went like 
multiplication? Well, it doesn’t. I mean, mostly it does, but consider the 
following: What’s 105.2 + 0.000005? Turns out it’s not 105.200005, nor is it 
100, though (which would be one significant figure, from the 0.000005). It’s 
(surprise!) 105.2. You continue down to the last digit all of the numbers in 



the column share. This ends up making some sense, but as before, 
remember to add the whole thing up and then determine significant figures 
to reduce round-off error. 
 
 
The dreaded calculus 
 
 Ok, you’ve taken it, you may have failed it (I’m with you), but most of 
you hate it. I’m speaking, of course, of the dreaded calculus. It’s amazing 
how truly much geologists hate calculus. It’s especially amazing 
considering that it’s something we take for granted when we speak in 
words. So, perhaps a little review? At the outset, let me state that I don’t 
really care that you relearn such vagaries as integration by parts, or 
differentiation in the complex plane. Whatever. I want you to know what a 
derivative is, what an integral is, and where to go for help integrating and 
differentiating. 
 First, what the hell is a derivative? Some of you will say “it’s a slope” 
and others “it’s a tangent curve”. Basically, a derivative is a measure of a 
rate of change of a function. This is effectively a slope. Look! If you take the 
function y=2x, you could determine the slope, right? It’s ∆y/∆x, right? This 
is great. That’d make the slope 2.  NOW, suppose we had the function 
y=x2. The problem here is that it actually depends where you are on the 
curve what the slope is! Here ∆y/∆x has no meaning unless we determine 
how big a ∆x we’re talking about. The bigger it is, the less accurate the 
slope will be for the point of interest. Conversely, though, the smaller ∆x is, 
the more accurate the slope will be. SO, what if we made ∆x infinitesimally 
small? We’d have the most accurate slope, and life would be good. To 
show that it’s incredibly tiny, let’s just call it dx instead of ∆x, and call dx the 
differential of x. 
Now, instead of ∆y/∆x we have dy/dx. What is dy/dx? (this is a formalism, 
by the way, saying “the derivative of y with respect to x”. We’ll talk about 
why we need it in a minute.) For our example above, y' here is 2. The nice 
thing is that the slope doesn’t change with location. For any x, the slope is 
2. Nice. It doesn’t have to be this way, though. You may remember that the 
derivative of y=x2 is 2x. This does vary with location. No matter what, 
though, it’s a statement of the slope of x2 at any point x. We don’t have to 
deal with just location, either. Suppose we had some volume, V, and that 



volume expanded and contracted so that V=sint. The change in volume 
with time, then, is dV/dt=cost. 

A lot of times we’ll deal with functions that vary both with location and 
time. What happens if there’s more than one variable? Like, y=xt2?  This is 
why we have the formalism—dy/dx is t2, but dy/dt is 2xt. Basically, you treat 
the other variables like constants and just derivate. To let you know that 
there’s other variables in there, we change the notation from d to ∂ to show 
it’s a partial derivative. Big deal. 

Hey, on a side note, there’s nothing that says you can’t have an 
equation involving both a function AND its derivative. Like, say,  
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which is a basic statement in hydrology. These are called differential 
equations for obvious reasons, and their solution is far more useful than 
calculus is, mostly because many natural phenomena obey differential 
equation rules (like hydrologic continuity, for instance). Differential 
equations having only one variable (like the above) are called ordinary 
differential equations (or ODEs) and their solution is generally handled in a 
first class in differential equations. Ones with more than one variable are 
called partial differential equations and are handled in a more advanced 
class. I recommend both classes to you, but promise there will be no ODE 
or PDE solving in this class. 
 So, how to take a derivative? You can memorize a few, but in the 
end, just learn to use a derivative table, and keep one you know and love 
on hand. If you spend a lot of time doing derivatives, you might invest the 
time in learning Maple or Mathematica, but for just a few, use a table! You 
may already have one—most calculus textbooks have one inside the front 
cover. 
 
 As derivation is to addition, so integration is to subtraction. It’s the 
opposite of a derivative. We think of integration as “the area under a curve” 
and commonly it is. Another simple way of thinking of it is that we can get 
the equation for the rate of change, but we wanted the original quantity. For 
example, I might have an expression for velocity with time, but I wanted to 
know how far I went—enter the integral. My advice—get an integral table 



and learn to love it. I will introduce a few oddities and leave it at that. First, 
there’s the same “who are we integrating” thing that we had in derivatives. 
There’s the integral symbol, the function, then the “dx” that says who’s 
getting integrated. This helps if there’s more than one variable. Second, 
note that y=2x+1 and y=2x+π both have the same derivative, 2. It follows, 
then, that the integral of 2 is not merely “2x”, but could be 2x plus any 
constant. We call this an indefinite integral, and call the proper answer 
2x+c. For definite integrals (the ones with the little numbers top and 
bottom) you just insert the top number for the variable you integrated, and 
subtract the same thing with the bottom number inserted. To wit: 
 

 22

0

2

0

0d2 −==∫ txxx
t

t

 

 
Notice the loss of the constant, because the constant appears in both parts 
of the definite integral. 
 Lastly, there’s nothing that says we can’t integrate more than once, 
the same way that we can differentiate more than once. Whereas 
differentiation often happens more than once with the same variable, 
integration often happens over two different variables. Consider a surface, 
z=2x+y. This is a continuous surface, so its area is infinite. BUT, we could 
define a section of it, and ask for the area. I won’t talk too much more about 
it, but the formalism looks like ( )∫∫ yxyxf dd,  or more simply ( )∫∫ Ayxf d, . Either 
way, it’s just saying the area of a surface, or the flux through a surface. 
Similarly, a triple integral is a statement of volume or volume change. This 
makes an easy statement of continuity: 
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This just says that in some system the change in mass in the system has to 
be balanced by flow into or out of the system through the border. This is a 
form of the Reynolds Transport Equation, and is really just the same thing 
as our other continuity equations. [the volume integral is the change in 
storage with time, so it’s dS/dt, and the surface integral is a compacted way 
of saying inflow and outflow, so those are I(t) and Q(t).] 


