
Lecture 9—Estimating precipitation over an area 
 
 
 Ok, we ended last time with a statement of how data from a 
single rain gauge can be reported as either a cumulative mass 
curve (see) or a hyetograph (see). What I want to talk about today 
is how we get from these forms of data to what we really wanted, 
which was estimating the total rainfall on a watershed. To do this 
we need a few tools: 
 

• We need to know how efficient rain gauges are at 
collecting all the rain that fell 

• We need to know how to handle rain gauges that fail to 
perform during a rainfall 

• We need to be able to incorporate changes to the 
gauge into the long-term history of the gauge 

• We need to know how to incorporate data from several 
gauges into a unified whole 

 
Last, we’re going to talk about how to do an end-run around the 
entire problem (and incur a bunch of new ones for our trouble). 
 
So, first thing: 
 
RAIN GAUGE EFFICIENCY  
 

Anybody here ever been to NYC on a windy day? You can 
turn a corner and be nearly blown off your feet. This is because the 
large buildings in NYC cause very strange wind patterns locally. 
Specifically, nature doesn’t tend to like sharp edges—engineers 
do. Sharp edges often cause singularities in continuous 
phenomena, causing instabilities. This is certainly true with wind, 
where turbulent eddies are often shed off these edges. Take a 
good look at the rain gauge we have. See where I’m going with 
this? The sharp edges on the sides of the rain gauge make 
turbulent eddies that shed over the rain gauge itself. The updrafts 
retard rain trying to get in the gauge, and this effect is worse for 
snow (see the graph). A number of attempts have been made to 
shield the edge, but with limited success. 

As a result, a number of correction factors have been 
introduced for rain gauges. Naturally, they’re a function of the wind 
speed. For a standard NWS 8” rain gauge (like ours) the equation 
is: 
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and for snow,  
 
 ( )28.1157.0606.4100 v

su eK +−=  
 
where v is in m/s. K is a constant that should be multiplied by the 
recorded value to get the estimated true rainfall. 
 
MISSING DATA FROM RAIN GAUGES 
 
 What to do when furry beasts have ripped out one of your 
rain gauges? The simplest approach is just to find a gauge that 
was working, look at a long-term rain recording from that gauge 
and compare it to the one that’s got missing data. You can 
interpolate from there. HOWEVER, this only works when the 
rainfall over the watershed tends to be uniform, and the watershed 
is of fairly low relief (it doesn’t work for a thunderstorm in 
Spearfish, for instance). 
 In cases where you really need that estimate, here’s 
probably the best way. You need at least three nearby working rain 
gauges. The formula commonly reported is: 
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However, multiple linear regression of the form: 
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may be a better choice because it allows for weighting of the 
stations (to make ones closer count for more, for instance…) 
 
CHECKING FOR CONSISTENCY OF A DATASET 
 
What happens if we decide to: add an Alter shield to a rain gauge? 
a tree that used to be near our gauge falls over? replace a gauge 
rippled out by furry beasts? Worry about the growth of a city 
upwind of our gauge? All of these things may be considered point 
changes that will affect the long-term trends our gauge records. 
How to find out if this has been altered? The solution is typically to 
compare the long-term history of one gauge against an average for 



many gauges in the area. The two are then plotted on separate 
axes, and changes in the slope noted (see example). To correct 
for this regime change, data prior to the change should be altered 
by multiplying by the ratio of the two slopes (here 0.74/1.19). 
 
ESTIMATING PRECIPITATION OVER A WATERSHED 
 
 Ok, so we’ve got six gauges in a watershed, and a bunch 
more outside it. How do we take the data from several point 
sources and amalgamate it into a single whole? Turns out there’s 
several methods. Perhaps the easiest would be simply to average 
all the gauges in the watershed and be done with it. This is actually 
done. It tends to be done in areas without too many gauges, and in 
areas without large variability in precipitation from gauge to gauge. 
 Let’s take a step up in sophistication. Suppose we could 
figure out, for any point on the watershed, which gauge was 
closest, and make each gauge responsible only for the area that 
it’s the closest to? How would you do this, anyway? Let’s see. 
Take a watershed with some gauges in it. Start swinging a circle 
around each gauge until it starts to impinge on another circle. 
Along that section, we’d draw a line dividing the two arcs. Right? 
Look familiar? This is EXACTLY how you determine the bisector of 
a line from way back in geometry. So, we could skip all this circle 
crap and cut to the chase. Draw a line between any two stations, 
take the bisector of that line and extend it until it hits someone 
else’s bisector. What you’re left with is a very odd shape that 
outlines the area that’s closest to say, station A, in the watershed. 
These shapes are called Thiessen polygons after the proud 
inventor. To use them, just get the area and multiply by the rainfall 
at the gauge. Add up all the subarea totals and divide by the total 
watershed area, et voilà, you have the average precipitation over 
the watershed. 
 Ok. This seems a little hokey. Rain isn’t going to fall in 
weighted polygons, is it? It’s going to fall in a continuous smooth 
surface, like a topo map of rain, right? Hey! What if we make a 
topo map from the data we’ve got here? No different from 
surveying, really. We could just make the topo map, then do the 
exact same thing we did with the polygons—get the area between 
each contour and multiply by the average value between two 
contours (so between the 1mm and 2mm contours you’d multiply 
by 1.5). These are called isohyetal diagrams, and the individual 
contours are called isohyets. There is much bickering about how to 
contour, but suffice it to say it’s done. 



AN END-RUN AROUND THE WHOLE MESS 
 
 This seems like a lot of work, and it appears that we could 
get vastly different answers from the same set of data, depending 
on how we treat the data. Worse, we still don’t have very good 
coverage over an area! 

One day, while smoking crack, meteorologists pondered this 
problem. “Hey,” they thought, “what if we could determine, in real 
time, the amount of rain at every point. That would make us look 
so cool on TV!” Thus was born the Doppler weather radar. 
 During WWII, in the early days of radar, it became apparent 
that precipitation made it difficult to see incoming aircraft because 
the radar waves were bouncing off the rain or snow, and not the 
implements of fiery destruction. 
 After WWII, military radar stations were turned over for use 
as thunderstorm monitors, but in 1988 a purpose-built radar 
network came online. This is the NEXRAD system, also known as 
WSR-88.  
 The NEXRAD system uses an empirically derived equation: 
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Where Z is the strength of the radar return, R is the rainfall rate, 
and a and b are constants. One common set of coefficients for a 
and b are 200 and 1.6, respectively, but 228 and 1.5 are often 
used, too. This causes trouble—take a look. The basic problem is 
that we have to tune using a set of poorly defined parameters. 
How to deal with this? That’s right, kids—back to the rain gauges. 
Rain gauges are commonly used to “ground truth” radar data, and 
a correction added to the radar data (see example). Ever wonder 
why there was this sudden rush to have every elementary school 
on the planet get a rain gauge in the early 1990’s? This is why. 
 
So. In the US today, rain gauges play as vital a role as they ever 
did. Rain gauges are the ground truth at a point, and are fleshed 
out with a more precise algorithm than Thiessen polygons or even 
contouring—real-time radar data is now used in place of these 
methods. 


