Chapter 1: An Introduction to Computer Science

Invitation to Computer Science, C++ Version, Third Edition

Objectives

In this chapter, you will learn about:

- The definition of computer science
- Algorithms
- A brief history of computing
- Organization of the text

Introduction

- Common misconceptions about computer science:
 - Computer science is the study of computers
 - Computer science is the study of how to write computer programs
 - Computer science is the study of the uses and applications of computers and software

The Definition of Computer Science

- Gibbs and Tucker definition of computer science
 - □ The study of algorithms, including their:
 - Formal and mathematical properties
 - Hardware realizations
 - Linguistic realizations
 - Applications

- Computer scientist designs and develops algorithms to solve problems
- Operations involved in designing algorithms:
 - Formal and mathematical properties
 - Studying the behavior of algorithms to determine whether they are correct and efficient
 - Hardware realizations
 - Designing and building computer systems that are able to execute algorithms

Linguistic realizations

- Designing programming languages and translating algorithms into these languages
- Applications
 - Identifying important problems and designing correct and efficient software packages to solve these problems

- Algorithm
 - Dictionary definition
 - Procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation
 - A step-by-step method for accomplishing a task
 - Informal description
 - An ordered sequence of instructions that is guaranteed to solve a specific problem

- An algorithm is a list that looks like
 - STEP 1: Do something
 - □ STEP 2: Do something
 - □ STEP 3: Do something

 - □ STEP N: Stop, you are finished

- Categories of operations used to construct algorithms
 - Sequential operations
 - Carries out a single well-defined task; when that task is finished, the algorithm moves on to the next operation
 - Examples:
 - Add 1 cup of butter to the mixture in the bowl
 - Subtract the amount of the check from the current account balance

Set the value of x to 1

Conditional operations

- Ask a question and then select the next operation to be executed on the basis of the answer to that question
- Examples

If the mixture is too dry, then add one-half cup of water to the bowl

Conditional operations examples (continued):

- If the amount of the check is less than or equal to the current account balance, then cash the check; otherwise, tell the person that the account is overdrawn
- If x is not equal to 0, then set y equal to 1/x; otherwise, print an error message that says we cannot divide by 0

- Iterative operations
 - Tell us to go back and repeat the execution of a previous block of instructions
 - Examples
 - Repeat the previous two operations until the mixture has thickened
 - While there are still more checks to be processed, do the following five steps
 - Repeat steps 1, 2, and 3 until the value of y is equal to 11

If we can specify an algorithm to solve a problem, we can automate its solution

Computing agent:

The machine, robot, person, or thing carrying out the steps of the algorithm

 Does not need to understand the concepts or ideas underlying the solution

The Formal Definition of an Algorithm

Algorithm

- A well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
- Unambiguous operation
 - An operation that can be understood and carried out directly by the computing agent without needing to be further simplified or explained

The Formal Definition of an Algorithm (continued)

- A primitive operation (or a primitive) of the computing agent
 - Operation that is unambiguous for computing agent
 - Primitive operations of different individuals (or machines) vary
 - An algorithm must be composed entirely of primitives
- Effectively computable
 - Computational process exists that allows computing agent to complete that operation successfully

The Formal Definition of an Algorithm (continued)

- The result of the algorithm must be produced after the execution of a finite number of operations
 - Infinite loop
 - The algorithm has no provisions to terminate
 - A common error in the designing of algorithms

The Importance of Algorithmic Problem Solving

- Algorithmic solutions can be:
 - Encoded into some appropriate language
 - Given to a computing agent to execute
- The computing agent
 - Would mechanically follow these instructions and successfully complete the task specified
 - Would not have to understand
 - Creative processes that went into discovery of solution
 - Principles and concepts that underlie the problem

The Early Period: Up to 1940

- 3,000 years ago: Mathematics, logic, and numerical computation
 - Important contributions made by the Greeks, Egyptians, Babylonians, Indians, Chinese, and Persians
- 1614: Logarithms
 - Invented by John Napier to simplify difficult mathematical computations
- Around 1622: First slide rule created

The Early Period: Up to 1940 (continued)

- 1672: The Pascaline
 - Designed and built by Blaise Pascal
 - One of the first mechanical calculators
 - Could do addition and subtraction
- 1674: Leibnitz's Wheel
 - Constructed by Gottfried Leibnitz
 - Mechanical calculator
 - Could do addition, subtraction, multiplication, and division

Figure 1.4 The Pascaline: One of the Earliest Mechanical Calculators

Invitation to Computer Science, C++ Version, Third Edition

The Early Period: Up to 1940 (continued)

- 1801: The Jacquard loom
 - Developed by Joseph Jacquard
 - Automated loom
 - Used punched cards to create desired pattern
- 1823: The Difference Engine
 - Developed by Charles Babbage
 - Did addition, subtraction, multiplication, and division to 6 significant digits
 - Solved polynomial equations and other complex mathematical problems

The Early Period: Up to 1940 (continued)

- 1823: The Difference Engine
 - Developed by Charles Babbage
 - Capabilities:
 - Addition, subtraction, multiplication, and division to 6 significant digits
 - Solve polynomial equations and other complex mathematical problems

Figure 1.5 Drawing of the Jacquard Loom

Invitation to Computer Science, C++ Version, Third Edition

The Early Period: Up to 1940 (continued)

- 1830s: The Analytic Engine
 - Designed by Charles Babbage
 - More powerful and general-purpose computational machine
 - Components were functionally similar to the four major components of today's computers
 - Mill (modern terminology: arithmetic/logic unit)
 - Store (modern terminology: memory)
 - Operator (modern terminology: processor)
 - Output (modern terminology: input/output)

The Early Period: Up to 1940 (continued)

- 1890: U.S. census carried out with programmable card processing machines
 - Built by Herman Hollerith
 - These machines could automatically read, tally, and sort data entered on punched cards

The Birth of Computers: 1940–1950

- Development of electronic, general-purpose computers
 - Did not begin until after 1940
 - Was fueled in large part by needs of World War II
- Early computers
 - Mark I
 - ENIAC
 - ABC system
 - Colossus
 - Z1

Figure 1.6 Photograph of the ENIAC Computer

Invitation to Computer Science, C++ Version, Third Edition

The Birth of Computers: 1940–1950

- Stored program computer model
 - Proposed by John Von Neumann in 1946
 - Stored binary algorithm in the computer's memory along with the data
 - Is known as the Von Neumann architecture
 - Modern computers remain, fundamentally, Von Neumann machines
 - First stored program computers
 - EDVAC
 - EDSAC

The Modern Era: 1950 to the Present

First generation of computing (1950-1959)

- Used vacuum tubes to store data and programs
- Each computer was multiple rooms in size
- Computers were not very reliable

- Second generation of computing (1959-1965)
 - Replaced vacuum tubes by transistors and magnetic cores
 - Dramatic reduction in size
 - Computer could fit into a single room
 - Increase in reliability of computers
 - Reduced costs of computers
 - High-level programming languages
 - The programmer occupation was born

- Third generation of computing (1965-1975)
 - Used integrated circuits rather than individual electronic components
 - Further reduction in size and cost of computers
 - Computers became desk-sized
 - First minicomputer developed
 - Software industry formed

- Fourth generation of computing (1975-1985)
 - Reduced to the size of a typewriter
 - First microcomputer developed
 - Desktop and personal computers common
 - Appearance of
 - Computer networks
 - Electronic mail
 - User-friendly systems (Graphical user interfaces)
 - Embedded systems

Figure 1.7 The Altair 8800, the World's First Microcomputer

Invitation to Computer Science, C++ Version, Third Edition

- Fifth generation of computing (1985-?)
 - Recent developments
 - Massively parallel processors
 - Handheld devices and other types of personal digital assistants (PDAs)
 - High-resolution graphics
 - Powerful multimedia user interfaces incorporating sound, voice recognition, touch, photography, video, and television

Recent developments (continued)

- Integrated global telecommunications incorporating data, television, telephone, FAX, the Internet, and the World Wide Web
- Wireless data communications
- Massive storage devices
- Ubiquitous computing

GENERATIONAPPROXIMATE DATESMAJOR ADVANCESFirst1950–1957First commercial computers First symbolic programming languages Use of binary arithmetic, vacuum tubes for storage Punched card input/outputSecond1957–1965Transistors and core memories First disks for mass storage Size reduction, increased reliability, lower costs First operating systemsThird1965–1975Integrated circuits Further reduction in size and cost, increased reliability First minicomputers Time-shared operating systemsThird1965–1975Time-shared operating systems Appearance of the software industry First set of computing standards for compati- bility between systemsFigure 1.8			
First1950–1957First commercial computers First symbolic programming languages Use of binary arithmetic, vacuum tubes for storage Punched card input/outputSecond1957–1965Transistors and core memories First disks for mass storage Size reduction, increased reliability, lower costs First high-level programming languages First operating systemsThird1965–1975Integrated circuits Further reduction in size and cost, increased reliability First minicomputers Time-shared operating systemsThird1965–1975Stere of the software industry First set of computing standards for compatibility between systemsFigure 1.8	GENERATION	APPROXIMATE DATES	MAJOR ADVANCES
Second1957–1965Transistors and core memories First disks for mass storage Size reduction, increased reliability, lower costs First high-level programming languages First operating systemsThird1965–1975Integrated circuits Further reduction in size and cost, increased reliability First minicomputers Time-shared operating systems Appearance of the software industry First set of computing standards for compati- bility between systemsFigure 1.8	First	1950–1957	First commercial computers First symbolic programming languages Use of binary arithmetic, vacuum tubes for storage Punched card input/output
Third 1965–1975 Integrated circuits Further reduction in size and cost, increased reliability First minicomputers Time-shared operating systems Appearance of the software industry First set of computing standards for compatibility between systems Figure 1.8	Second	1957–1965	Transistors and core memories First disks for mass storage Size reduction, increased reliability, lower costs First high-level programming languages First operating systems
Figure 1.8	Third	1965–1975	Integrated circuits Further reduction in size and cost, increased reliability First minicomputers Time-shared operating systems Appearance of the software industry First set of computing standards for compati- bility between systems
			Figure 1.8

Some of the Major Advancements in Computing

Fourth	1975–1985	Large-scale and very-large-scale integrated circuits Further reduction in size and cost, increased reliability First microcomputers Growth of new types of software and of the software industry Computer networks Graphical user interfaces
Fifth	1985–?	Ultra-large-scale integrated circuits Supercomputers and parallel processors Laptops and handheld computers Wireless computing Massive external data storage devices Ubiquitous computing High-resolution graphics, visualization, virtual reality Worldwide networks Multimedia user interfaces
		Figure 1.8

Some of the Major Advancements in Computing

Invitation to Computer Science, C++ Version, Third Edition

Organization of the Text

 This book is divided into six separate sections called levels

 Each level addresses one aspect of the definition of computer science

Computer science/Algorithms

Invitation to Computer Science, C++ Version, Third Edition

Organization of the Text

 Level 1: The Algorithmic Foundations of Computer Science

Chapters 1, 2, 3

Level 2: The Hardware World

□ Chapters 4, 5

Level 3: The Virtual Machine

□ Chapters 6, 7

Organization of the Text

- Level 4: The Software World
 - □ Chapters 8, 9, 10, 11
- Level 5: Applications
 - □ Chapters 12, 13, 14
- Level 6: Social Issues
 - Chapter 15

Invitation to Computer Science, C++ Version, Third Edition

Summary

- Computer science is the study of algorithms
- An algorithm is a well-ordered collection of unambiguous and effectively computable operations that, when executed, produces a result and halts in a finite amount of time
- If we can specify an algorithm to solve a problem, then we can automate its solution
- Computers developed from mechanical calculating devices to modern electronic marvels of miniaturization