Chapter 11: Models of Computation

Invitation to Computer Science,
C++ Version, Third Edition
Objectives

In this chapter, you will learn about:

- A model of a computing agent
- A model of an algorithm
- Turing machine examples
- The Church–Turing thesis
- Unsolvable problems
Introduction

- Some problems do not have any algorithmic solution

- A model of a computer
 - Easy to work with
 - Theoretically as powerful as a real computer
 - Needed to show that something cannot be done by any computer
What Is a Model?

- Models are an important way of studying physical and social phenomena, such as
 - Weather systems
 - Spread of epidemics
 - Chemical molecules

- Models can be used to
 - Predict the behavior of an existing system
 - Test a proposed design
What Is a Model? (continued)

- A model of a phenomenon
 - Captures the essence (important properties) of the real thing
 - Probably differs in scale from the real thing
 - Suppresses some of the details of the real thing
 - Lacks the full functionality of the real thing
A Model of a Computing Agent

- A good model for the “computing agent” entity must:
 - Capture the fundamental properties of a computing agent
 - Enable the exploration of the capabilities and limitations of computation in the most general sense
Properties of a Computing Agent

- A computing agent must be able to:
 - Accept input
 - Store information and retrieve it from memory
 - Take actions according to algorithm instructions
 - Choice of action depends on the present state of the computing agent and input item
 - Produce output
The Turing Machine

A Turning machine includes

- A (conceptual) tape that extends infinitely in both directions
 - Holds the input to the Turing machine
 - Serves as memory
 - The tape is divided into cells
- A unit that reads one cell of the tape at a time and writes a symbol in that cell
The Turing Machine (continued)

- Each cell contains one symbol
 - Symbols must come from a finite set of symbols called the alphabet

- Alphabet for a given Turing machine
 - Contains a special symbol b (for “blank”)
 - Usually contains the symbols 0 and 1
 - Sometimes contains additional symbols
The Turing Machine (continued)

- Input to the Turing machine
 - Expressed as a finite string of nonblank symbols from the alphabet
- Output from the Turing machine
 - Written on tape using the alphabet
- At any time the unit is in one of k states
Figure 11.2
A Turing Machine Configuration
The Turing Machine (continued)

Each operation involves:

- Write a symbol in the cell (replacing the symbol already there)
- Go into a new state (could be same state)
- Move one cell left or right
The Turing Machine (continued)

- Each instruction says something like:

 if (you are in state i) and (you are reading symbol j) then

 write symbol k onto the tape

 go into state s

 move in direction d
The Turing Machine (continued)

- A shorthand notation for instructions
 - Five components
 - Current state
 - Current symbol
 - Next symbol
 - Next state
 - Direction of move
 - Form
 (current state, current symbol, next symbol, next state, direction of move)
The Turing Machine (continued)

- A clock governs the action of the machine
- Conventions regarding the initial configuration when the clock begins
 - The start-up state will always be state 1
 - The machine will always be reading the leftmost nonblank cell on the tape
- The Turing machine has the required features for a computing agent
A Model of an Algorithm

- Instructions for a Turing machine are a model of an algorithm
 - Are a well-ordered collection
 - Consist of unambiguous and effectively computable operations
 - Halt in a finite amount of time
 - Produce a result
Turing Machine Examples: A Bit Inverter

- A bit inverter Turing machine
 - Begins in state 1 on the leftmost nonblank cell
 - Inverts whatever the current symbol is by printing its opposite
 - Moves right while remaining in state 1
- Program for a bit inverter machine

 $(1,0,1,1,R) \\
 (1,1,0,1,R)$
A Bit Inverter (continued)

- A state diagram
 - Visual representation of a Turing machine algorithm
 - Circles are states
 - Arrows are state transitions
Figure 11.4
State Diagram for the Bit Inverter Machine
A Parity Bit Machine

- Odd parity bit
 - Extra bit attached to the end of a string of bits
 - Set up so that the number of 1s in the whole string, including the parity bit, is odd
 - If the string has an odd number of 1s, parity bit is set to 0
 - If the string has an even number of 1s, parity bit is set to 1
Figure 11.5
State Diagram for the Parity Bit Machine
A Parity Bit Machine (continued)

- Turing machine program for a parity bit machine

 \[(1,1,1,2,R)\]
 \[(1,0,0,1,R)\]
 \[(2,1,1,1,R)\]
 \[(2,0,0,2,R)\]
 \[(1,\text{b},1,3,R)\]
 \[(2,\text{b},0,3,R)\]
Machines for Unary Incrementing

- Unary representation of numbers
 - Uses only one symbol: 1
 - Any unsigned whole number n is encoded by a sequence of $n + 1$ 1s

- An incrementer
 - A Turing machine that adds 1 to any number
Figure 11.6
State Diagram for Incrementer
Machines for Unary Incrementing (continued)

- A program for incrementer

 \[(1,1,1,1,R)\]

 \[(1,b,1,2,R)\]

- An alternative program for incrementer

 \[(1,1,1,1,L)\]

 \[(1,b,1,2,L)\]
A Unary Addition Machine

- A Turing machine can be written to add two numbers, using unary representation

- The Turing machine program

 - (1,1,b,2,R)
 - (2,1,b,3,R)
 - (3,1,1,3,R)
 - (3,b,1,4,R)
Figure 11.8
State Diagram for the Addition Machine
The Church–Turing Thesis

- Church–Turing thesis

- If there exists an algorithm to do a symbol manipulation task, then there exists a Turing machine to do that task
The Church–Turing Thesis (continued)

- Two parts to writing a Turing machine for a symbol manipulation task
 - Encoding symbolic information as strings of 0s and 1s
 - Writing the Turing machine instructions to produce the encoded form of the output
Figure 11.9
Emulating an Algorithm by a Turing Machine
The Church–Turing Thesis (continued)

- Based on the Church–Turing thesis
 - The Turing machine can be accepted as an ultimate model of a computing agent
 - A Turing machine program can be accepted as an ultimate model of an algorithm
The Church–Turing Thesis (continued)

- Turing machines define the limits of computability

- An uncomputable or unsolvable problem
 - A problem for which we can prove that no Turing machine exists to solve it
Unsolvable Problems

- The halting problem

- Decide, given any collection of Turing machine instructions together with any initial tape contents, whether that Turing machine will ever halt if started on that tape
Unsolvable Problems (continued)

- To show that no Turing machine exists to solve the halting problem, use a proof by contradiction approach

 - Assume that a Turing machine exists that solves this problem

 - Show that this assumption leads to an impossible situation
Unsolvable Problems (continued)

- Practical consequences of other unsolvable problems related to the halting problem
 - No program can be written to decide whether any given program always stops eventually, no matter what the input
 - No program can be written to decide whether any two programs are equivalent (will produce the same output for all inputs)
Unsolvable Problems (continued)

- Practical consequences of other unsolvable problems related to the halting problem (continued)

- No program can be written to decide whether any given program run on any given input will ever produce some specific output
Summary of Level 4

- Topics examined in Level 4: The Software World
 - **Java**: procedural high-level programming language
 - **Other high-level languages**: other procedural languages, special-purpose languages, functional languages, logic-based languages
Summary of Level 4 (continued)

- Topics examined in Level 4: The Software World (continued)

 - Series of tasks that a language compiler must perform to convert high-level programming language instructions into machine language code

 - Problems that can never be solved algorithmically
Summary

- Models are an important way of studying physical and social phenomena

- **Church-Turing thesis**: If there exists an algorithm to do a symbol manipulation task, then there exists a Turing machine to do that task

- The Turing machine can be accepted as an ultimate model of a computing agent
Summary

- A Turing machine program can be accepted as an ultimate model of an algorithm.

- Turing machines define the limits of computability.

- An uncomputable or unsolvable problem: we can prove that no Turing machine exists to solve the problem.