Chapter 13: Electronic Commerce and Information Security

Invitation to Computer Science, C++ Version, Third Edition
Objectives

In this chapter, you will learn about:

- E-commerce
- Databases
- Information security
Introduction

- E-commerce: financial transactions conducted by electronic means

- Early days (early and mid-1990s) of online commerce
 - A customer fills out an order via the Web and submits it
 - The online order is printed out by the business, and then processed like a “traditional” purchase
Introduction (continued)

- E-business
 - Every part of a financial transaction is handled electronically, including
 - Processing of orders
 - Verification of credit
 - Completion of transactions
 - Issuing debits
 - Alerting shipping
 - Reducing inventory
E-commerce

- Opening an online store requires at least as much planning as building another physical store location
The Vision Thing

- In planning for opening an online store, a company must access:
 - Its objectives
 - Risks involved
 - Costs involved
- The company should go ahead with its plans only if it is determined that its overall bottom line will improve by going online
Decisions, Decisions

- Personnel
 - In-house development or outsourcing

- Hardware
 - Web server machine
 - Additional computers
Decisions, Decisions (continued)

- **Software**: programs to
 - Process customer orders
 - Interact with accounting, shipping, and inventory control software
 - Manage and store customer information
Anatomy of a Transaction

- Goals for an online business
 - Draw potential customers to your site
 - Keep them there
 - Set up optimum conditions for them to complete a purchase

- A typical online transaction can be divided into nine steps
Step 1: Getting There

- How can you get customers to your Web site?
 - Conventional advertising
 - Obvious domain name
 - Search engine
 - Portal
Step 2: Do I Know You?

- Providing Web site personalization by:
 - Asking the user to register and then log-in on each visit
 - Using cookies

- Providing incentives and benefits for return customers
Step 3: Committing to an Online Purchase

- Must provide security for transmitting sensitive information
 - **Encryption**: encoding data to be transmitted into a scrambled form using a scheme agreed upon between the sender and the receiver
 - **Authentication**: verifying the identify of the receiver of your message
Step 3: Committing to an Online Purchase (continued)

- SSL (secure sockets layer)
 - A series of protocols that allow a client and a Web server to:
 - Agree on encryption methods
 - Exchange security keys
 - Authenticate the identity of each party
Steps 4 and 5: Payment Processing

- Most common payment option: credit card
- Option 1
 - Step 4: Online order form communicates with the accounting system
 - Step 5: Accounting system verifies the customer’s credit and process the transaction on the fly
Steps 4 and 5: Payment Processing (continued)

- Option 2
 - **Step 4**: Collect information on the customer’s order
 - **Step 5**: Evaluate the customer’s credit and complete the transaction offline
Steps 6–9: Order Fulfillment

- **Step 6**: Order entry system alerts inventory system to reduce the items in stock

- **Step 7**: Order entry system contacts shipping system to arrange for shipping

- **Steps 8 and 9**: Shipping system works with the shipping company to pick up and deliver the purchase to the customer
Figure 13.1: A Typical Online Transaction in Nine Steps
Designing Your Web Site

- Web site taxonomy
 - How information will be classified and organized on the Web site
- CRM (customer relationship management)
 - Goals
 - Improve your customer satisfaction
 - Build customer relationships
 - Bring people back to your Web site time and time again
Designing Your Web Site (continued)

- Some important Web site components
 - Site map
 - Navigation bar
 - Shopping carts
 - Order checkout forms
 - Shipping options
 - E-mail confirmations
 - Privacy policy
Designing Your Web Site (continued)

- Web pages should be designed to be displayed on different machines, operating systems, and browsers

- Text-only options should be offered for users with slow connections, the visually impaired, and the hearing-impaired
Databases

- An electronic database
 - Stores data items
 - Data items can be extracted
 - Data items can be sorted
 - Data items can be manipulated to reveal new information
Data Organization

- **Byte**
 - A group of eight bits
 - Can store the binary representation of a single character or of a small integer number
 - A single unit of addressable memory

- **Field**
 - A group of bytes used to represent a string of characters
Data Organization (continued)

- Record
 - A collection of related fields

- Data file
 - Related records are kept in a data file

- Database
 - Related files make up a database
Figure 13.3
Data Organization Hierarchy
Figure 13.4
Records and Fields in a Single File

<table>
<thead>
<tr>
<th>Record</th>
<th>Field 1</th>
<th>Field 2</th>
<th>Field 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure 13.5
One Record in the Rugs-For-You Employees File

<table>
<thead>
<tr>
<th>ID</th>
<th>LastName</th>
<th>FirstName</th>
<th>Birthdate</th>
<th>PayRate</th>
<th>HoursWorked</th>
</tr>
</thead>
<tbody>
<tr>
<td>149</td>
<td>Takasano</td>
<td>Frederick</td>
<td>5/23/1966</td>
<td>$12.35</td>
<td>250</td>
</tr>
</tbody>
</table>
Database Management Systems

- Database management system (DBMS)
 - Manages the files in a database

- Relational database model
 - Conceptual model of a file as a two-dimensional table
Database Management Systems (continued)

- In a relational database
 - A table represents information about an entity
 - A row contains data about one instance of an entity
 - A row is called a tuple
 - Each category of information is called an attribute
Employees Table for Rugs-For-You

<table>
<thead>
<tr>
<th>ID</th>
<th>Last Name</th>
<th>First Name</th>
<th>Birthdate</th>
<th>Pay Rate</th>
<th>Hours Worked</th>
</tr>
</thead>
<tbody>
<tr>
<td>116</td>
<td>Kay</td>
<td>Janet</td>
<td>3/29/1956</td>
<td>$16.60</td>
<td>94</td>
</tr>
<tr>
<td>123</td>
<td>Perreira</td>
<td>Francine</td>
<td>8/15/1987</td>
<td>$8.50</td>
<td>185</td>
</tr>
<tr>
<td>149</td>
<td>Takasano</td>
<td>Frederick</td>
<td>5/23/1966</td>
<td>$12.35</td>
<td>250</td>
</tr>
<tr>
<td>171</td>
<td>Kay</td>
<td>John</td>
<td>11/17/1954</td>
<td>$17.80</td>
<td>245</td>
</tr>
<tr>
<td>165</td>
<td>Honou</td>
<td>Morris</td>
<td>6/9/1988</td>
<td>$6.70</td>
<td>53</td>
</tr>
</tbody>
</table>

Figure 13.6
Employees Table for Rugs-For-You
<table>
<thead>
<tr>
<th>EMPLOYEEID</th>
<th>PLANTYPE</th>
<th>DATEISSUED</th>
</tr>
</thead>
<tbody>
<tr>
<td>171</td>
<td>B2</td>
<td>10/18/1974</td>
</tr>
<tr>
<td>171</td>
<td>C1</td>
<td>6/21/1982</td>
</tr>
<tr>
<td>149</td>
<td>B2</td>
<td>8/16/1990</td>
</tr>
<tr>
<td>149</td>
<td>A1</td>
<td>5/23/1995</td>
</tr>
<tr>
<td>149</td>
<td>C2</td>
<td>12/18/1999</td>
</tr>
</tbody>
</table>

Figure 13.7
InsurancePolicies Table for Rugs-For-You
Database Management Systems (continued)

- Specialized query languages
 - Enable the user or another application program to query the database
 - Example: SQL (Structured Query Language)

- Relationships among different entities in a database
 - Established through the correspondence between primary keys and foreign keys
Figure 13.8
Three Entities in the Rugs-For-You Database
Other Considerations

- Performance issues
 - Large files are maintained on disk
 - Organizing record storage on disk can minimize time to access a particular record
 - Creating additional records to be stored with the file can significantly reduce access time
Other Considerations (continued)

- Distributed databases
 - Allow physical data to reside at separate and independent locations that are networked

- Massive, integrated government databases raise legal, political, social, and ethical issues
Information Security

- Information security
 - Data protection, whether on disk or transmitted across a network
 - **Authentication**: prevent access by hackers
 - **Encryption**: make data meaningless if they do get it
Encryption Overview

- Cryptography
 - The science of “secret writing”
- Plaintext
 - A message that is not encoded
- Ciphertext
 - An encrypted message
Encryption Overview (continued)

- Process of encryption and decryption
 - Plaintext is encrypted before it is sent
 - Ciphertext is decrypted back to plaintext when it is received

- A symmetric encryption algorithm
 - Requires a secret key known to both the sender and receiver
 - Sender encrypts the plaintext using the key
 - Receiver decrypts the message using the key
 Encryption Overview (continued)

- Asymmetric encryption algorithm
 - Also called public key encryption algorithm
 - The key for encryption and the key for decryption are different
 - Person A makes an encryption key public
 - Anyone can encrypt a message using the public key and send it to A
 - Only A has the decryption key and can decrypt the message
Simple Encryption Algorithms: Caesar Cipher

- Caesar cipher
 - Also called a shift cipher
 - Each character in the message is shifted to another character some fixed distance farther along in the alphabet
 - A stream cipher: encodes one character at a time
 - A substitution cipher: a single letter of plaintext generates a single letter of ciphertext
Block Cipher

- A group or block of plaintext letters gets encoded into a block of ciphertext, but not by substituting one at a time for each character

- Each plaintext character in the block contributes to more than one ciphertext character
Block Cipher (continued)

- One ciphertext character is created as a result of more than one plaintext letter

- Diffusion (scattering) of the plaintext within the ciphertext
DES

- Stands for Data Encryption Standard
- Designed to protect electronic information
- A block cipher
 - **Blocks**: 64 bits long
 - **Key**: 64 bit binary key (only 56 bits are actually used)
DES (continued)

- Every substitution, reduction, expansion, and permutation is determined by a well-known set of tables.

- The same algorithm serves as the decryption algorithm.
Figure 13.11
The DES Encryption Algorithm
DES (continued)

- **Triple DES**
 - Improves the security of DES
 - Requires two 56-bit keys
 - Runs the DES algorithm three times

- **AES (Advanced Encryption Standard)**
 - Uses successive rounds of computations that mix up the data and the key
 - **Key length**: 128, 192, or 256 bits
Public-Key Systems

- RSA
 - Most common public key encryption algorithm
 - Based on results from number theory
 - If n is a large number, it is extremely difficult to find the prime factors for n
 - RSA is often used in the initial stage of communication between client and server
Figure 13.12
An SSL Session
Summary

- **E-business**: every part of a financial transaction is handled electronically

- Opening an online store requires a significant amount of planning

- **Database**: allows data items to be stored, extracted, sorted, and manipulated

- **Relational database model**: conceptual model of a file as a two-dimensional table
Summary

- **Main parts of information security**: encryption and authentication

- **Types of encryption algorithms**
 - Symmetric encryption algorithms
 - Asymmetric encryption algorithms (or public key encryption algorithms)

- **Encryption algorithms**: Caesar cipher, block cipher, DES, Triple DES, AES, RSA