
Chapter 5:

The Processor:

Datapath and Control

Computer Architecture CS 35101-002 2

Overview

� Logic Design Conventions

� Building a Datapath and Control Unit

� Different Implementations of MIPS instruction set

� A simple implementation of a processor

� Multicycle Implementation

� Exceptions

Computer Architecture CS 35101-002 3

Review
Logic Design Conventions

� Almost ready to move into chapter 5 and start building a
processor

� First, let’s review Boolean Logic and build the ALU

� To support 1-add for MIPS instruction set and use 32 of them

32

32

32

operation

result

a

b

ALU

Computer Architecture CS 35101-002 4

Review:
Boolean Logic (summary)

� Boolean operations

� a AND b

� True only when a is true and b is true

� a OR b

� True when either a is true or b is true, or both are
true

� NOT a

� True when a is false, and vice versa

Computer Architecture CS 35101-002 5

� Boolean expressions

� Constructed by combining together Boolean
operations

� Example: (a AND b) OR ((NOT b) AND (NOT a))

� Truth tables capture the output/value of a
Boolean expression

� A column for each input plus the output

� A row for each combination of input values

Review: Boolean Logic (continued)

Computer Architecture CS 35101-002 6

Boolean Logic (continued)

1

0

0

1

value

1

0

0

1

(a.b) + (b.a)

0

0

0

1

b.a

1

0

0

0

a.b

0

1

0

1

b

0

0

1

1

a

11

01

10

00

ba

� Example:

(a AND b) OR ((NOT b) and (NOT a))

INPUT OUTPUT

Computer Architecture CS 35101-002 7

Gates

� Gates

� Hardware devices built from transistors to mimic
Boolean logic

� AND gate

� Two input lines, one output line

� Outputs a 1 when both inputs are 1

a

b

AND gate
c

Computer Architecture CS 35101-002 8

Gates (continued)

� OR gate

� Two input lines, one output line

� Outputs a 1 when either input is 1

� NOT gate

� One input line, one output line

� Outputs a 1 when input is 0 and vice versa

a

b

OR gate

c

a

NOT gate

Computer Architecture CS 35101-002 9

� Abstraction in hardware design

� Map hardware devices to Boolean logic

� Design more complex devices in terms of logic,
not electronics

Gates (continued)

Computer Architecture CS 35101-002 10

Building Computer Circuits

� A circuit is a collection of logic gates:

� Transforms a set of binary inputs into a set of
binary outputs

� Values of the outputs depend only on the current
values of the inputs

� Combinational circuits have no cycles in them
(no outputs feed back into their own inputs)

Computer Architecture CS 35101-002 11

Circuit Diagram (Summary)

OutputInput

a

b

c

d

a + b

b
(a + b).b NOT((a + b).b)

•Every output in a circuit diagram can be represented as a Boolean Expression

Computer Architecture CS 35101-002 12

A Circuit Construction Algorithm

ALU

� Sum-of-products algorithm is one way to design
circuits:

� Truth table � Boolean expression � gate layout

Computer Architecture CS 35101-002 13

� Sum-of-products algorithm

� Truth table captures every input/output possible
for circuit

� Repeat process for each output line

� Build a Boolean expression using AND and NOT for
each 1 of the output line

� Combine together all the expressions with ORs

� Build circuit from whole Boolean expression

A Circuit Construction Algorithm

(continued)

Computer Architecture CS 35101-002 14

Construction of Addition Circuit
1-ADD Algorithm

13 + 14

011000  Carry Bit ci

13 � 001101 ai

+
14 � 001110 bi

27 � 011011 si

Computer Architecture CS 35101-002 15

An Addition Circuit
add $s1, $s2, $s3

� Addition circuit

� Adds two unsigned binary integers, setting output
bits and an overflow

� Built from 1-bit adders (1-ADD)

� Starting with rightmost bits, each pair produces

� A value for that order

� A carry bit for next place to the left

Computer Architecture CS 35101-002 16

� 1-ADD truth table

� Input

� One bit from each input integer: ai, bi

� One carry bit (always zero for rightmost bit): ci

� Output

� One bit for output place value: si

� One “carry” bit: ci+1

An Addition Circuit (continued)

Computer Architecture CS 35101-002 17

1-ADD Circuit

Sub-expression construction (AND & NOT Gates)

11111

10011

10101
01001

10110
01010

01100

00000

ci+1sicibiai

Inputs outputs

a . b . c

a . b . c

a . b . c

a . b . c

Computer Architecture CS 35101-002 18

OUTPUT: si

1-ADD Circuit
Sub-expression construction (AND & NOT Gates)

(a . b . c) + a . b . c() + a . b . c() + ()a . b . c

Construct the circuit diagram for the sub-expression

Computer Architecture CS 35101-002 19

11111

10011

10101
01001

10110

01010

01100

00000

ci+1sicibiai

Inputs outputs

a . b . c

a . b . c

a . b . c

a . b . c

1-ADD Circuit

Sub-expression construction (AND & NOT

Gates)

Computer Architecture CS 35101-002 20

OUTPUT: ci+1

(a . b . c) + a . b . c() + a . b . c() + ()a . b . c

1-ADD Circuit
Sub-expression construction (AND & NOT Gates)

Construct the circuit diagram for the sub-expression

Computer Architecture CS 35101-002 21

� Building the full adder

� Put rightmost bits into 1-ADD, with zero for the
input carry

� Send 1-ADD’s output value to output, and put its
carry value as input to 1-ADD for next bits to left

� Repeat process for all bits

An Addition Circuit (continued)

Computer Architecture CS 35101-002 22

Control Circuits

� Do not perform computations

� Choose order of operations or select among
data values

� Major types of controls circuits

� Multiplexors

� Select one of inputs to send to output

� Decoders

� Sends a 1 on one output line, based on what input
line indicates

Computer Architecture CS 35101-002 23

� Multiplexor form

� 2N regular input lines

� N selector input lines

� 1 output line

� Multiplexor purpose

� Given a code number for some input, selects that
input to pass along to its output

� Used to choose the right input value to send to a
circuit (ALU, Registers..)

Control Circuits (continued)

Computer Architecture CS 35101-002 24

Practice

Problem: Consider a logic function with three inputs: A,
B, and C.

Output D is true if at least one input is true
Output E is true if exactly two inputs are true
Output F is true only if all three inputs are true

Show the truth table for these three functions.

Show the Boolean equations for these three functions.

Show an implementation consisting of AND, OR and
NOT gates.

Computer Architecture CS 35101-002 25

The Processor: Datapath and Control
Intro

CPI Clock cycle timexCPU time in
program

=

Recall CPU Performance equation:

Instruction Count x

� The ISA and Compiler determine the Instruction Count

� The Processor determines:
� Clock cycles Per Instruction (CPI)
� Seconds per clock cycle (Clock cycle time)

Best Performance � Optimal (minimum) CPU time

Build a processor that exploits the MIPS ISA

Computer Architecture CS 35101-002 26

The Processor: Datapath and Control

Basic MIPS Implementation

� Let’s look at a subset of core MIPS ISA:
� The memory-reference instructions: load word (lw),

store word (sw)

� The arithmetic-logical instructions: add, sub, and,
or, slt

� The control flow instructions: branch equal (beq)and
jump (j)

Create Datapath and design the Control

for the three instruction classes

Computer Architecture CS 35101-002 27

The Processor: Datapath and Control
Basic MIPS Implementation flow

� Let’s examine the steps involved to implement
the instruction classes

1. Generic Steps

[assume the memory unit stores instructions and supply
the instruction given an address]

� use the program counter (PC) to supply instruction
address

� get the instruction from memory

� read registers

� use the instruction to decide exactly what to do

Computer Architecture CS 35101-002 28

The Processor: Datapath and Control
Basic MIPS Implementation flow

2. Use ALU after reading the register(s)

� The memory-reference instructions: address
calculation

� The arithmetic-logical instructions: execute operation

� Branch instruction: Comparison

3. Now Complete Implementation based on
instruction class

� The memory-reference instructions: access memory?

� The arithmetic-logical instructions: access register?

� Branch: access PC?

Computer Architecture CS 35101-002 29

Abstract High-level View

Basic (our subset) MIPS Implementation flow

Data

Register #

Register #

Register #

PC Address Instruction

Instruction

memory

Registers ALU Address

Data

Data
memory

AddAdd

4

What is wrong with this flow?

Computer Architecture CS 35101-002 30

� Two types of logic elements:
� elements that operate on data values

(Combinational)
� No memory

� output state depends only on current input state

� ALU: and-gate, or-gate and not-gate are combinational

� elements that contain state (State Elements)
� Store the state of the bit

� Output depends on the stored bit

� State-elements (flip-flops, latches)

� Instruction, Data Memories, Registers

Logic Design Conventions
MIPS Implementation

Computer Architecture CS 35101-002 31

State Element

Clock

Data value
(to update SE)

Previous Data Value

When to write data value (required input)

data value in earlier clock cycle

INPUT OUTPUT

State Element
(SE)

A State Element has a minimum of two inputs and one output

Computer Architecture CS 35101-002 32

State Elements
Clocking Methodology

� Defines when signals can be read and when
they can be written

If a signal is written at the same time it is read

Value of read: Old Value New Value
Mix

of Old & New Values
or

Clocking methodology avoids the scenario

Computer Architecture CS 35101-002 33

Clock period Rising edge

Falling edge

� When should an element that contains state be updated ?

Clocks
Synchronous Logic

Computer Architecture CS 35101-002 34

State Elements
Synchronous Digital Systems

� Clocks

� Free running signal with a fixed cycle time

� Decide when an element that contains state
should be updated

Clock period Rising edge

Falling edge

Clock Period: High and Low

Computer Architecture CS 35101-002 35

Sequential Logic Design

• Logic Circuit representation:
• Block of State Elements � Combinational Logic � State Element
• Signals written into state elements must be valid (Stable)

After Clock edge: SE-1 output changes � Input to Combinational Logic
|
| (Stable signal)
--� SE-2

Require Long Clock Period Restriction to ensure output
of combinational logic is stable (lower bound)

State
elemen

n

t
1

State
element

2

Combinational logic

Clock cycle

Computer Architecture CS 35101-002 36

State
element

1

State
element

2

Combinational logic

Clock cycle

� Edge-triggered Clocking Methodology
�Either Rising edge or Falling Edge of clock is active
�All State Changes occur on the active clock edge

�Sampling of signals is almost instantaneous
�Choice of an active clock edge depends on implementation

Clocking Methodology

All signals from SE -1 to SE -2 propagate in one clock cycle

Edge-triggered clocking

Rising edge Falling edge

Computer Architecture CS 35101-002 37

Sequential Logic

� How does a Sequential Logic circuit operate?

1. When the clock issues a pulse ����
� Each SE examines outputs of combinational logic, changes affected 0/1 state

to opposite state (takes a few nanoseconds) and transforms to a stable state

2. The change in state of some of the stored bits triggers
changes in some combinational logic and subsequently
changes in other SE (unstable state).
� Takes few nanoseconds for every output of the combinational logic block to

reach a stable state

3. When all outputs of combinational logic blocks are stable, the
clock issues another pulse
� Repeat steps 1 and 2.

Require Long Clock Period Restriction to ensure output of combinational logic is stable

Computer Architecture CS 35101-002 38

Building a Datapath
Store and Access Instructions

PC

Instruction
address

Instruction

Instruction

memory

Add Sum

a. Instruction memory b. Program counter c. Adder

Datapath Elements to store and Access Instructions

Instruction memory is SE (but no write function)� Combinational logic
PC � SE

Computer Architecture CS 35101-002 39

Building a Datapath
R-Format ALU Operations

Read
register 1

Read
register 2

Write
register

Write
Data

Registers ALUData

Data

Zero

ALU
result

RegWrite

a. Registers b. ALU

5

5

5

Register
numbers

Read
data 1

Read
data 2

ALU operation
4

Units needed to implement R-format ALU operations
Register File contains 25 registers (read/write) � SE

Computer Architecture CS 35101-002 40

Building a datapath
lw and sw operations

A d d re s s
R e a d

d a ta

D a ta

m e m o r y

a . D a ta m e m o r y u n it

W r i te
d a ta

M e m R e a d

M e m W r i te

b . S ig n - e x te n s io n u n it

S ig n
e x te n d

1 6 3 2

Additional Units needed to implement lw and sw

Memory Unit is a SE:
Inputs: Address & Write Data
Output: Read Result

Sign Extension Unit:
Converts a 16-bit input to 32-bit output

Computer Architecture CS 35101-002 41

Building Datapath
� Use Multiplexors to combine: the components

R e a d
re g is te r 1

R e a d
re g is te r 2

W r ite
re g is te r

W r ite
d a ta

W r ite
d a ta

R e g is te rs A L U

A d d

Z e ro

R e g W r ite

M e m R e a d

M e m W rite

P C S rc

M e m to R e g

R e a d
d a ta 1

R e a d
d a ta 2

A L U o p e ra tio n
4

S ig n
ex te n d

1 6 3 2

In s tru c t io n
A L U

re s u lt

A d d

A L U
re s u lt

M
u
x

M
u
x

M
u
x

A L U S rc

A d d re s s

D a ta
m e m o ry

R e a d
d a ta

S h ift
le ft 2

4

R e a d
a d d re s s

In s tru c t io n
m e m o ry

P C

Computer Architecture CS 35101-002 42

A Simple Implementation Scheme

ALU Control

� Let’s look at a subset of core MIPS ISA:
� The memory-reference instructions: load word (lw),

store word (sw)

� The arithmetic-logical instructions: add, sub, and,
or, set on less than (slt)

� The control flow instructions: branch equal (beq)and
jump (j)

Computer Architecture CS 35101-002 43

A Simple Implementation Scheme

ALU Control

� ALU has 4 control Inputs (24 combinations)

� Examine Subset (6 combinations)

NOR1100

set on less than0111

subtract0110

add0010

OR0001

AND0000

FunctionALU Control Input

Computer Architecture CS 35101-002 44

•Selecting the operations to perform (ALU, read/write,
etc.)
•Controlling the flow of data (multiplexor inputs)
•Information comes from the 32 bits of the instruction

What should the ALU do with this instruction ?

add $8, $17, $18 Instruction Format:

000000 10001 10010 01000 00000 100000

op rs rt rd shamt funct

Compute AND, OR, subtract, add or slt depending on 6-bit funct

A Simple Implementation Scheme

ALU Control

Computer Architecture CS 35101-002 45

ALU Control

What should the ALU do with this instruction?

lw $1, 100($2)

35 2 1 100

op rs rt 16 bit offset

Compute the memory address…….. But how?

Computer Architecture CS 35101-002 46

10arithmetic

01beq

00lw, sw

ALUop (is set to)opcode

ALU Control

Need a mapping for hardware to compute the 4-bit ALU control input signals

Instruction Type:

Function Code for Arithmetic…..

Computer Architecture CS 35101-002 47

ALU Control Bit Settings

0111set on less than101010set on less than10R-type

0001or100101OR10R-type

0000and100100AND10R-type

0110subtract100010subtract10R-type

0010add100000add10R-type

0110subtractXXXXXXbranch equal01Branch
equal

0010addXXXXXXstore word00sw

0010addXXXXXXload word00lw

ALU
control
input

Desired ALU
action

Funct
Field

Instruction
Operation

ALUopInstruction
opcode

X ~ don’t care bit

Computer Architecture CS 35101-002 48

ALU Control Bit Settings
� Control Bit Settings depends on:

� ALUop bits

� Function field codes for R-type instruction

011110101010R-type

000110010110R-type

000010010010R-type

011010001010R-type

001010000010R-type

0110XXXXXX01Branch equal

0010XXXXXX00sw

0010XXXXXX00lw

ALU control
input

Funct FieldALUopInstruction
opcode

Computer Architecture CS 35101-002 49

ALU Control Logic

Truth Table (the 3-ALU control bits)

X

X

X

X

X

X

X

F4

1

0

0

0

0

X

X

F3

0

1

1

0

0

X

X

F2

1

0

0

1

0

X

X

F1

X

X

X

X

X

X

X

F5

Funct Field

0

1

0

0

0

X

X

F0

1

1

1

1

1

X

0

ALUop1 ALUop0

0111X

0001X

0000X

0110X

0010X

01101

00100

Operation

(Output)

ALUop

ALU Control function has 3-distinct outputs: operation2 operation1 operation0

Computer Architecture CS 35101-002 50

ALU Control Logic
Mapping of ALU Control Function to Gates

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

What is the mapping for the ALU control functions?

Computer Architecture CS 35101-002 51

X

X

X

X

X

X

X

F4

1

0

0

0

0

X

X

F3

0

1

1

0

0

X

X

F2

1

0

0

1

0

X

X

F1

X

X

X

X

X

X

X

F5

Funct Field

0

1

0

0

0

X

X

F0

1

1

1

1

1

X

0

ALUop1 ALUop0

0111X

0011X

0000X

0110X

0010X

01101

00100

Operation

(Output)
ALUop

Operation2

Operation1

Operation0

Operation

ALUOp1

F3

F2

F1

F0

F (5–0)

ALUOp0

ALUOp

ALU control block

Mapping of ALU Control Functions

set on less
than

0111

subtract0110

add0010

OR0001

AND0000

FunctionALU Control
Input

Computer Architecture CS 35101-002 52

Designing the Main Control Unit

Datapath

� Let’s examine MIPS Instruction Fields & Control Lines:

5 bits

10:16

shamt

6 bits5 bits5 bits5 bits6 bits# of bits

5:015:1120:1625:2131:26Bit
Position

functrdrtrsopField

R-Type Instruction

•The op field in bits 31:26 always set to 000000
•Source Registers: Identified in bits 25:21 & bits 20:16 resp.
• Destination Register: Identified in bits 15:11
•The shamt field is never used (ignore)
•The funct field is coded as per ALU design

Observations:

Computer Architecture CS 35101-002 53

Designing the Main Control Unit

Datapath

� Load word, store word and branch-on-equal:

16 bits5 bits5 bits6 bits# of bits

15:020:1625:2131:26Bit
Position

addressrtrsopField

I-Type Instruction

• The op field - same position as R-type format
• The base register (rs) and rt fields - same positions as R-type format
•The address field in bits 15 - 0

Observations:

Computer Architecture CS 35101-002 54

� The Op field is always in bits 31 – 26

� Labeled as op5, Op4, Op3, Op2, Op1, Op0

� Every instruction reads register specified by rs field

� Every instruction, except load word, reads the register specified
by rt field

� The load word writes to the rt field

� The base register for load and store word is always specified by
rs field

� The destination register is one of two places:

� For load word, it is rt field (bits 20 -16)

� For R-Type instruction it is in rd field (bits 15 -11)

� Thus a multiplexor needs to be added to the datapath to select
the correct field for the write register input

Designing the Main Control Unit

Observations

Computer Architecture CS 35101-002 55

Designing the Main Control Unit

Effects of control signals

� Fig 5.17 shows the datapath with 7 control lines

Send word to register fileSend ALU result to register fileMemtoReg

Store Write data into addressed
memory word

NoneMemWrite

Read contents of addressed
memory word

NoneMemRead

Send branch target to PCSend PC+4 to PCPCSrc

Send sign-extended lower 16
bits of instruction to ALU

Send rt register to ALUALUSrc

Store Write data input into
Destination register

NoneRegWrite

Destination write register is in

rd field

Destination number of write
register is in rt field

RegDst

Effect if 1Effect if 0Signal Name

Computer Architecture CS 35101-002 56

R ead
reg ister 1

R ead
reg ister 2

W rite
reg ister

W rite
data

W rite
data

Registers

ALU

Add

Zero

Read
data 1

Read
data 2

S ign
extend

16 32

Instruction
[31–0] ALU

result

Add

ALU
result

M
u
x

M
u
x

M
u
x

Address

D ata
m em ory

R ead
data

Shift
le ft 2

4

R ead
address

Instruction
m em ory

PC

1

0

0

1

0

1

M
u
x

0

1

ALU

contro l

Instruction [5–0]

Instruction [25–21]

Instruction [31–26]

Instruction [15–11]

Instruction [20–16]

Instruction [15–0]

RegD st

Branch

M em R ead

M em toReg

ALUO p

M em W rite

ALUSrc

RegW rite

C ontro l

Instruction RegDst ALUSrc

Memto-

Reg

Reg

Write

Mem

Read

Mem

Write Branch ALUOp1 ALUp0

R-format 1 0 0 1 0 0 0 1 0
lw 0 1 1 1 1 0 0 0 0
sw X 1 X 0 0 1 0 0 0
beq X 0 X 0 0 0 1 0 1

Designing the Main Control Unit
Control unit computes settings of control lines

PCSrc

1
32 4

5

1. Instruction Memory
2. Register Read
3. ALU Operation
4. Data Memory
5. Register Write

Computer Architecture CS 35101-002 57

Designing the Main Control Unit

Effects of control signals

� Fig 5.17 shows two additional control line control lines
� ALUOp1 and ALUOp0 (ALUOp)

� The states of all control lines (except PCSrc) are
determined by Op code field

� The state of PCSrc is determined by

� AND gate with inputs: Zero output of ALU and Branch control line

� The Branch control line is asserted if Op field equals 000100
(beq)

Computer Architecture CS 35101-002 58

Designing the Main Control Unit

Control unit computes settings of control lines

101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-format

ALUOp0ALUOp1BranchMem
Write

Mem
Read

Reg
Write

Memto-
Reg

ALUSrcRegDstInstruction

R-format Instructions: add, sub, slt
Source Register fields ~ rs and rt
Destination register field ~ rd

add $t1, $t2, $s1

Computer Architecture CS 35101-002 59

101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-format

ALUOp
0

ALUOp
1

BranchMem
Write

MemR
ead

RegW
rite

Memto-
Reg

ALUSrcRegDstInstruction

Send word to register fileSend ALU result to
register file

MemtoReg

Store Write data into
addressed memory word

NoneMemWrite

Read contents of addressed
memory word

NoneMemRead

Send branch target to PCSend PC+4 to PCPCSrc

Send sign-extended lower
16 bits of instruction to ALU

Send rt register to
ALU

ALUSrc

Store Write data input into
Destination register

NoneRegWrite

Destination write register is
in rd field

Destination number
of write register is in
rt field

RegDst

Effect if 1Effect if 0Signal
Name

The datapath in operation

X

X

X

X

X

X

X

F
4

1

0

0

0

0

X

X

F
3

0

1

1

0

0

X

X

F
2

1

0

0

1

0

X

X

F
1

X

X

X

X

X

X

X

F
5

Funct Field

0

1

0

0

0

X

X

F
0

1

1

1

1

1

X

0

ALUo
1

ALUop
0

0111X

0011X

0000X

0110X

0010X

01101

00100

Operation

(Output)
ALUop

Computer Architecture CS 35101-002 60

The datapath in operation

Truth Table

0110Op1

1000ALUOp0

0001AlUOp1

1000Branch

0100MemWrite

0010MemRead

0011RegWrite

XX10MemtoReg

0110ALUSrc

XX01RegDstOutputs

0110Op0

1000Op2

0100Op3

0000Op4

0110Op5Inputs

beqswlwR-formatSignal
Name

Input/

Output

Computer Architecture CS 35101-002 61

The datapath in operation

101000X0Xbeq

000100X1Xsw

000011110lw

010001001R-
format

AL
UO
p0

AL
UO
p1

Br
an
ch

Me
m
Wr
ite

M
e
m
Re
ad

Re
g
W
rit
e

Me
mt
o-
Re
g

AL
USr
c

Reg
Dst

Instruc
tion

Send word to register fileSend ALU result to
register file

MemtoReg

Store Write data into
addressed memory word

NoneMemWrite

Read contents of addressed
memory word

NoneMemRead

Send branch target to PCSend PC+4 to PCPCSrc

Send sign-extended lower
16 bits of instruction to ALU

Send rt register to
ALU

ALUSrc

Store Write data input into
Destination register

NoneRegWrite

Destination write register is
in rd field

Destination number
of write register is in
rt field

RegDst

Effect if 1Effect if 0Signal
Name

The datapath in operation

0110Op1

1000ALUOp
0

0001AlUOp
1

1000Branch

0100MemW
rite

0010MemR
ead

0011RegWri
te

XX10Memto
Reg

0110ALUSrc

XX01RegDstOutpu
ts

0110Op0

1000Op2

0100Op3

0000Op4

0110Op5Inputs

beqswlwR-
format

Signal
Name

Input/

Output

Computer Architecture CS 35101-002 62

Single-cycle implementation
Let’s summarize

ALUAccess
Register

Fetch
Instruction

Branch

Memory

access

ALUAccess
Register

Fetch
Instruction

Store word

Register
access

Memory
access

ALUAccess
Register

Fetch
Instruction

Load word

Register
access

ALUAccess
Register

Fetch
Instruction

R-type

Register
Write

Data
Memory

ALU
Operation

Register
Read

Instruction
Memory

Major Functional Units used by Instruction class/Single Clock cycleInstruction
Class

Other Units: PC, Control, Multiplexors

Computer Architecture CS 35101-002 63

350 ps

550 ps

600 ps

400 ps

Period

010050200Branch

20010050200Store word

5020010050200Load word

50010050200R-type

Register
Write

Data
Memory

ALU
Operation

Register
Read

Instruction
Memory

Major Functional Units used by Instruction

Operation Times

Instruction
Class

Single-cycle implementation
Let’s summarize

Assume Critical Machine Operation Times: Memory Unit ~ 200 ps, ALU and adders ~ 100ps,

Register file (read/write) ~ 50 ps. Estimate clock cycle for the machine

Single Clock cycle determined by longest instruction period = 600 ps

Computer Architecture CS 35101-002 64

A Multicycle Implementation

Datapath

� Basic Idea (“Divide and Conquer”)

� Break MIPS Instructions into independent and
“manageable” steps
� Balance workload across steps

� Each step takes one clock cycle

� Re-use functional units in different steps
� Pack as much work into each step

� At most one ALU operation, one register file access
or one memory access per step

Computer Architecture CS 35101-002 65

A Multicycle Datapath Implementation

Approach

� A single memory replaces the instruction memory and
data memory associated with single-cycle approach

� A single ALU performs the addition operations (thereby eliminating
the two adders for single-cycle operation)

� A 32-bit Instruction Register (IR) is added to store instruction fetched
from memory

� A 32-bit Memory Data Register (MDR) is added to hold data fetched
from memory

� Two 32-bit registers, A and B are added to store values of source
registers rs and rt respectively

� A 32-bit register, ALUOut, is added to temporarily hold the results of
the ALU

� Use FSM to determine control signals (instead of instructions)

Computer Architecture CS 35101-002 66

A Multicycle Datapath Implementation

Actions of the 1bit Control Signals

Store a new value into PC if ALU result is 0NonePCWriteCond

Send MDR to register fileSend ALUOut result to register fileMemtoReg

Store Write data into addressed memory wordNoneMemWrite

Read contents of addressed memory wordNoneMemRead

Store a new value into the PCNonePCWrite

Store memory word into the IRNoneIRWrite

Memory address is ALUOutMemory address is PCIorD

First ALU Operand = A registerFirst ALU Operand = PCALUSrcA

Store Write data input into Destination registerNoneRegWrite

Destination write register is in rd field Destination number of write register
is in rt field

RegDst

Effect if 1Effect if 0Signal Name

Computer Architecture CS 35101-002 67

A Multicycle Datapath Implementation

Actions of the 2 bit Control Signals

New PC value is jump target address10

Second ALU Operand is sign-extended lower 16 bits of the IR10

Second ALU Operand is the constant 401

Second ALU Operand is the B register00ALUSrcB

New PC value comes from branch target address in ALUOut01

New PC value comes from ALU (PC+4)00PCSource

Second ALU Operand is sign-extended lower 16 bits of the IR
shifted left 2 places

11

ALU performs operation specified by funct field of the IR10

ALU performs a subtract operation01

ALU performs an ADD operation00ALUOp

Effect if 1ValueSignal Name

Computer Architecture CS 35101-002 68

Read
register 1

Read
register 2

Write
register

Write
data

Registers
ALU

Zero

Read
data 1

Read
data 2

Sign
extend

16 32

Instruction
[25–21]

Instruction
[20–16]

Instruction
[15–0]

ALU
result

M
u
x

M
u
x

Shift
left 2

Instruction
register

PC 0

1

M
u
x

0

1

M
u
x

0

1

M
u
x

0

1
A

B 0

1

2

3

ALUOut

Instruction
[15–0]

Memory
data

register

Address

Write
data

Memory

MemData

4

Instruction
[15–11]

1. Instruction Memory
2. Register Read
3. ALU Operation
4. Data Memory
5. Register Write

3
1&4

2 & 5

A Multicycle Datapath Implementation

Approach

Computer Architecture CS 35101-002 69

Breaking the Instructions
Example: add $t0, $t1, $t2

� The add instruction changes value of a register (Reg).

� Register specified by bits 15:11 of Instruction.

� Instruction specified by the PC.

� New value is the sum (“op”) of two registers.

� Registers specified by bits 25:21 and 20:16 of the instruction

Reg[Memory[PC][15:11]] <=

Reg[Memory[PC][25:21]] op

Reg[Memory[PC][20:16]]

Computer Architecture CS 35101-002 70

Breaking the Instructions

Example: add $t0, $t1, $t2

� Could break down to:
� IR <= Memory[PC]

� A <= Reg[IR[25:21]]

� B <= Reg[IR[20:16]]

� ALUOut <= A op B

� Reg[IR[15:11]] <= ALUOut

Reg[Memory[PC][15:11]] <=

Reg[Memory[PC][25:21]] op

Reg[Memory[PC][20:16]]

Computer Architecture CS 35101-002 71

A Multicycle Datapath Implementation
Five Execution steps

1. Instruction Fetch

2. Instruction Decode and Register Fetch

3. Execution, Memory Address Computation, or
Branch Completion

4. Memory Access or R-type instruction completion

5. Memory Read Completion

Computer Architecture CS 35101-002 72

1. Instruction Fetch

� Use PC to get instruction and put it in the Instruction Register.
� Increment the PC by 4 and put the result back in the PC.

IR <= Memory[PC];
PC <= PC + 4;

Read contents of
addressed memory word

MemRead

Store a new value into the
PC

PCWrite

Store memory word into
the IR

IRWrite

Memory address is
PC

IorD

First ALU Operand
= PC

ALUSrcA

Set to 1Set to 0Signal
Name

New PC value comes from ALU (PC+4)00ALUOp

ALUSrcB Second ALU Operand is the constant 401

Signal Settings:

Why update the PC now?

Computer Architecture CS 35101-002 73

2. Instruction Decode and Register Fetch

� Read registers rs and rt in case we need them

� Compute the branch address in case the
instruction is a branch

A <= Reg[IR[25:21]];

B <= Reg[IR[20:16]];

ALUOut <= PC + (sign-extend(IR[15:0])

<< 2);

What is the signal setting for step 2?

Computer Architecture CS 35101-002 74

3. Execution, Memory Address Computation, or Branch Completion

� ALU performs one of three functions, based on
instruction type

� Memory Reference:
ALUOut <= A + sign-extend(IR[15:0]);

� R-type:
ALUOut <= A op B;

� Branch:
if (A==B) PC <= ALUOut;

Determine the signal settings for each instruction type

Computer Architecture CS 35101-002 75

4. Memory Access or R-type instruction completion

� Loads and stores access memory

MDR <= Memory[ALUOut];

or

Memory[ALUOut] <= B;

� R-type instructions finish

Reg[IR[15:11]] <= ALUOut;

Computer Architecture CS 35101-002 76

Memory Read Completion

� Reg[IR[20:16]] <= MDR;

Only the load word instruction

executes this step

Computer Architecture CS 35101-002 77

A Multicycle Datapath Implementation

Let’s summarize

Load: Reg[IR[20:16]]
<= MDR

Memory read completion

Load: MDR <=
Memory[ALUOut] or

Store: Memory
[ALUOut] <= B

Reg [IR[15:11]] <=
ALUOut

Memory access or R-type
completion

If (A == B) PC <=
ALUOut

ALUOut <= A + sign-
extend (IR[15:0])

ALUOut <= A op BExecution, address
computation, branch/jump
completion

A <= Reg [IR[25:21]]

B <= Reg [IR[20:16]]

ALUOut <= PC + (sign-extend (IR[15:0]) << 2)

Instruction decode/register
fetch

IR <= Memory[PC]

PC <= PC + 4

Instruction fetch

Action for
branches

Action for
memory-
reference
instruction

Action for R-
type Instructions

Step Name

Computer Architecture CS 35101-002 78

Multicycle Datapath

Example

� How many cycles will it take to execute the
following MIPS code

lw $s2, 0($s3)
lw $s3, 4($s3)
beq $s2, $s3, Label #assume not
add $s5, $s2, $s3
sw $s5, 8($s3)

Computer Architecture CS 35101-002 79

Finite State Machine (FSM)
Overview

� Subsystems characterized by:

� Set of well defined states (States: 1, 2, 3,4, 5)

� State function determined typically by

� Current state

� Input values

� Output function determined typically by

� Current state

� Input values

