Chapter 1: Introduction to PLCs

Intro to PLC

Learning objectives

- Two ways to categorize a control system
- Overview of PLCs
- Differences between PLC, relay and PC-based control
- Basic PLC architecture

Automatic Control in Manufacturing Why Automatic Control is necessary

- To improve the quality and lower the cost of production.
- To increase the production rate.
- To attain optimal performance.
- To relieve the drudgery of many routine, repetitive manual operations:
 - Metal matching sequences
 - Product assembly lines
 - Batch chemical processes

Profitability usually depends on productivity and automation is a means towards greater productivity

Automatic Control System Basic Elements

- Input Sensors: Convert physical phenomena (for example, position) to electrical signal.
- Output Actuators: Convert electrical signal to a physical action, for example, air valve or motor.
- Programmable Logic Controller: Using the measurements, calculates control actions.

Programmable Logic Controllers Major Types

- Programmable Logic Control (PLC)
 - Developed initially out of Automotive Industry
- Distributed Control System (DCS)
 - Employed in the Chemical Industry

DCS and PLC systems are merging into one device: Programmable Electronic System (PES)

Our focus is on PLCs. We will talk more about this shortly

Automatic Control System Major Types of Sensors/Actuators

- Discrete Control Systems:
 - Dominated by Discrete Sensors and Actuators:
 - Take one of two values:
 - On/off, Open/Closed, running/Stopped, extend/retract
- Analog Control System:
 - Dominated by Analog Sensors and Actuators
 - Take an infinite number of values (continuous stream)
 - Position, acceleration, temperature, flow

Automatic Control System Continuous Vs. Discrete Control

 Most real programmable logic control systems are a combination of continuous and discrete sensors and actuators.

Automatic Control System Type of Process

- Industrial Manufacturing processes are classified based on the behavior of the actuator's output:
- Continuous Process
 - Material passes in a continuous stream through the processing equipment:
 - Steel Rolling Mill

Automatic Control System Type of Process (Batch)

Batch Process

 Actuators produce Finite quantities (batch) of materials. The input materials typically assume a defined order of processing actions

Automatic Control System Type of Process (Discrete)

- Discrete-Parts Manufacturing
 - A specified quantity of materials moves as a unit (group of parts) between workstations, on an assembly line/conveyor belt. Each unit has a unique id. A unit may be modified (drilled, painted etc) at a workstation. What is the output of the actuators?

Programmable Logic Control PLC

PLC – is an "Industrial" Computer

 Hardware & Software adapted to Industrial Environment and Electrical Technician

Why Programmable Logic Control?

- PLC is the work horse of industrial automation
- Production processes go through a fixed repetitive sequence of operation with logical steps
- Electronic Relays were used prior to PLCs:
 - Control systems were hard-wired using relays, timers and logical units
 - Control system had to be re-wired for new applications
 - Inflexible and time consuming
 - Resulted in product delays, high production costs...

PLC Overview

PLC Overview

A PLC consists of 4 main parts:

- Program Memory: Stores instructions for logical control sequence
- Data Memory: Stores status of switches, interlocks, past and current values of data items
- Output Devices: Hardware/software drivers for industrial process actuators
 - Solenoid switches, motors, valves
- Input Devices: Hardware/software drivers for industrial process sensors
 - Switch status sensors, proximity detectors, interlock settings ...
- Central Processing Unit: Brain of the PLC

PLC Components

PLC Components Central Processing Unit (CPU)

CPU

- Contains one or more processors to control the PLC
- Handles communication with other components
- Handles computations: executes OS, manages memory, monitors inputs, evaluates the user logic ("ladder logic")
- Programming language: ladder logic
- Lab PLC CPU (Rockwell)
 - Keyswitch is used to switch between different CPU modes
 - Program Mode
 - Run Mode
 - Remote Mode

Lab PLC CPU Modes

- Program Mode: All outputs are forced to off condition regardless of their state in logic:
 Develop and download your program in memory
- Run Mode: PLC continuously scans and executes your ladder logic
- Remote Mode: Allows you to remotely control the CPU mode from your computer: Switch between Program and Run modes from your computer

PLC Components Memory

- PLC Memory stores OS memory and application memory
- OS Memory: The OS is burned into ROM by manufacturer and controls system software used to program PLC ROM is non-volatile
- Application Memory:
 - Stores status of inputs and outputs, i.e. I/O Image tables as patterns of 0 and 1 (binary digits)
 - Stores contents of variables in user programs: "timers", "counters"
- Random Access Memory:
 - Your programs run/execute in the RAM.
 - □ RAM is volatile All data items in the RAM are lost if power is turned off
 - Mode

PLC Input/Output Modules

- Input Module:
 - Takes inputs from the outside world from any device (protects the CPU)
 - Converts real-world logic to CPU logic

250 VAC Device → (250 VAC Input Module) → low-level DC Signal

Identify the input module in your lab PLC; How may inputs does it take?

Output Module:

- Provides connection to the real-world output devices
- Output modules can handle DC or AC voltages to output digital or analog signals

Identify the output module in your lab PLC; How may output devices does it take?

Basic PLC Architecture

Control System Hardware A **Comparison**

Characteristic	Relay Systems	Computers	PLC Systems
Price per func.	Fairly low	Low	Low
Physical size	Bulky	Fairly compact	Compact
Oper. Speed	Slow	Fairly fast	Fast
Industrial environment	Excellent	Fair to good	Good
Design	Time-consuming	Usually simple	Simple
Complicated operations	No	Yes	Yes
Installation	Time-consuming	Simple to complex	Simple
Easy to change function	Very difficult	Usually simple	Very simple
Ease of maintenance	Poor - many contacts	Fair - several custom boards	Good - few std. cards
Recovery from power failure	0 sec.	1 - 100 sec.	1 - 3 sec.

PLCs Vs. Computers

The architecture of the PLC is basically the same as of a general-purpose computer.

Industrial Environment - Can be placed in areas with substantial amount of:

Electrical noise

- Electromagnetic interference
- Mechanical vibration
- □ Extreme temperatures (140° F)
- □ Non-condensing humidity (95%)

Reliability – Built to run continuously for years. (Compare with Windows OS) <u>Easily maintained by plant technicians</u> - Hardware interfaces easily connected. Modular and self-diagnosing interface circuits pinpoint malfunctions and are easily replaced. **Programmed using ladder logic**, easy to learn. <u>Executes a single program in orderly and sequential fashion</u> - Most medium to large PLCs have instructions that allow subroutine calling, interrupt routines, and bypass of certain instructions. Also, many PLCs can have modules that implement higher-level languages, e.g., BASIC.

<u>Recovers quickly from power failure</u> – No boot-up procedure. Diagnostic selftests and resumes running.