
1

3333
Introduction to

Visual Basic
Programming

 2009 Pearson Education, Inc. All rights reserved.

2

Comment is free but facts are sacredComment is free, but facts are sacred.
– C. P. Scott

The creditor hath a better memory than the debtor.
– James Howell

When faced with a decision, I always ask,
“What would be the most fun?”

– Peggy Walker

Equality, in a social sense, may be divided
into that of condition and that of rights

 2009 Pearson Education, Inc. All rights reserved.

into that of condition and that of rights.
– James Fenimore Cooper

3

OBJECTIVESOBJECTIVES
In this chapter you will learn:
 To write simple Visual Basic programs using To write simple Visual Basic programs using

code rather than visual programming.
 To write statements that input data from theTo write statements that input data from the

keyboard and output data to the screen.
 To declare and use data of various types.yp
 To store and retrieve data from memory.
 To use arithmetic operators to perform p p

calculations.

 2009 Pearson Education, Inc. All rights reserved.

4

OBJECTIVESOBJECTIVES
 To use the precedence of arithmetic operators

to determine the order in which operators areto determine the order in which operators are
applied.
 To write decision-making statements.g
 To use equality and relational operators to

compare operands.
 To use message dialogs to display messages.

 2009 Pearson Education, Inc. All rights reserved.

5

3.1 Introduction
3.2 Displaying a Line of Text
3.3 Creating Your First Program in Visual Basic

ExpressExpress
3.4 Displaying a Single Line of Text with Multiple

Statements
3.5 Adding Integers
3.6 Memory Concepts
3.7 Arithmetic
3.8 Decision Making: Equality and Relational Operators
3 9 U i M Di l t Di l M3.9 Using a Message Dialog to Display a Message
3.10 (Optional) Software Engineering Case Study:

Examining the ATM Requirements Document

 2009 Pearson Education, Inc. All rights reserved.

6

3.1 Introduction

• Console applications do not have a graphical user
interfaceinterface.

• There are several types of Visual Basic projects;• There are several types of Visual Basic projects;
the console application is one of the simplest.

• The application’s output appears in the Console window
or a Windows Command Prompt.p

 2009 Pearson Education, Inc. All rights reserved.

7
Outline

Welcome1.vb

 1 ' Fig. 3.1: Welcome1.vb

 2 ' Simple Visual Basic program.

 3

Comments improve
code readability.

 4 Module Welcome1

 5
 6 Sub Main()

 7
8 Console WriteLine("Welcome to Visual Basic!") 8 Console.WriteLine(Welcome to Visual Basic!)

 9
10 End Sub ' Main
11
12 End Module ' Welcome1

Welcome to Visual Basic!

Fig. 3.1 | Simple Visual Basic program.

 2009 Pearson Education,
Inc. All rights reserved.

8

3.2 Displaying a Line of Text (Cont.)

• A single-quote character (') starts a comment.

• Comments improve code readability.

• The Visual Basic compiler ignores comments.

• Console applications consist of pieces called modules.

 2009 Pearson Education, Inc. All rights reserved.

9

3.2 Displaying a Line of Text (Cont.)

• Module is a keyword reserved for use by Visual Basic.
A complete list of keywords is presented in Fig 3 2

 Visual Basic keywords and contextual keywords

 AddHandler AddressOf Alias And AndAlso

– A complete list of keywords is presented in Fig. 3.2.

 AddHandler AddressOf Alias And AndAlso

 As Boolean ByRef Byte ByVal

 Call Case Catch CBool CByte

 CChar CDate CDbl CDec Char

 CInt Class CLng CObj Const CInt Class CLng CObj Const

 Continue CSByte CShort CSng CStr

 CType CUInt CULng CUShort Date

 Decimal Declare Default Delegate Dim

 DirectCast Do Double Each Else

 ElseIf End Enum Erase Error

 Event Exit False Finally For

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.2 | Keywords and contextual keywords in Visual Basic. (Part 1 of 3.)

10

3.2 Displaying a Line of Text (Cont.)
 Visual Basic keywords and contextual keywords

 Friend Function Get GetType GetXmlNamespace

 Global GoTo Handles If Implements p

 Imports In Inherits Integer Interface

 Is IsNot Lib Like Long

 Loop Me Mod Module MustInherit

 MustOverride MyBase MyClass Namespace Narrowing MustOverride MyBase MyClass Namespace Narrowing

 New Next Not Nothing NotInheritable

 NotOverridable Object Of On Operator

 Option Optional Or OrElse Overloads

 Overridable Overrides ParamArray Partial Private

 Property Protected Public RaiseEvent ReadOnly

 ReDim REM RemoveHandler Resume Return

 SByte Select Set Shadows Shared y

 Short Single Static Step Stop

 SByte Select Set Shadows Shared

 String Structure Sub SyncLock Then

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.2 | Keywords and contextual keywords in Visual Basic. (Part 2 of 3.)

11

3.2 Displaying a Line of Text (Cont.)

 Visual Basic keywords and contextual keywords

 Throw To True Try TryCast

 TypeOf UInteger ULong UShort Using

 When While Widening With WithEvents

 WriteOnly Xor

C t t l k d Contextual keywords
 Aggregate Ansi Assembly Auto Binary

 Compare Custom Distinct Equals Explicit

 From Group By Group Join Into IsFalse

 IsTrue Join Key Let Mid

 Off Order By Preserve Skip Skip While

 Strict Take Take While Text Unicode

 Until Where

Fig. 3.2 | Keywords and contextual keywords in Visual Basic. (Part 3 of 3.)

 The following are retained as keywords, although they are no longer supported in Visual Basic 2008
 EndIf GoSub Variant Wend

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.2 | Keywords and contextual keywords in Visual Basic. (Part 3 of 3.)

12

3.2 Displaying a Line of Text (Cont.)

Common Programming Error 3.1
You cannot use a keyword as an identifier, so it is an

ferror, for example, use them as a Module name. The
Visual Basic compiler helps you locate such errors in
your programs. Contextual keywords may be used asyour programs. Contextual keywords may be used as
identifiers, but this is not recommended.

 2009 Pearson Education, Inc. All rights reserved.

13

3.2 Displaying a Line of Text (Cont.)

• The name of the Module is an identifier.
C i t f l tt di it d d ()– Can consist of letters, digits and underscores (_).

– Cannot begin with a digit or contain spaces.

• Keywords and identifiers are not case sensitive.

Good Programming Practice 3.1
Use whitespace to enhance program readability.Use whitespace to enhance program readability.

 2009 Pearson Education, Inc. All rights reserved.

14

3.2 Displaying a Line of Text (Cont.)

• Console applications begin executing at Main,
the entry point of the programthe entry point of the program.

• Sub begins the body of the method declaration• Sub begins the body of the method declaration
(the code that will be executed).

• End Sub closes the method declarations.

 2009 Pearson Education, Inc. All rights reserved.

15

3.2 Displaying a Line of Text (Cont.)

Good Programming Practice 3.2
Indent the entire body of each method declaration one

i i “ ” f i i i iadditional “level” of indentation. This emphasizes the
structure of the method, improving its readability.

 2009 Pearson Education, Inc. All rights reserved.

16

3.2 Displaying a Line of Text (Cont.)

• Characters in double quotes are called strings.
Th ti li i l di C l W it Li• The entire line including Console.WriteLine
is called a statement.

• Console.WriteLine contains two identifiers
separated by the dot separator (.).separated by the dot separator (.).

– The identifier to the right of the dot is the method name.
– The identifier to the left of the dot is the class name.

– This is known as a method call.

 2009 Pearson Education, Inc. All rights reserved.

17

3.3 Creating Your First Program in Visual
Basic ExpressBasic Express

• File > New Project... to display the New Project
dialog (Fig 3 3)dialog (Fig. 3.3).

– Choose Console Application.
– For Name, enter Welcome1, then click OK.

Ensure that Console Application is selected

Type the project name here

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.3 | Creating a Console Application with the New Project dialog.

18

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• The IDE now contains the open console application
(Fig 3 4)(Fig. 3.4).

• The code coloring scheme is called syntax-color
highlighting.highlighting.

Editor window
(type your program code here)

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.4 | IDE with an open console application.

19

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• Select Tools > Options….
Ens re the Show all settings check bo (Fig 3 5) is– Ensure the Show all settings check box (Fig. 3.5) is
unchecked.

– Expand the Text Editor Basic category, and select Editor.
– Under Interaction, check the Line Numbers check box.

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.5 | Modifying the IDE settings.

20

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

Solution Explorer

• Click Module1.vb in the
Solution Explorer
window to display its

Click Welcome1.vb to
display its properties

window to display its
properties (Fig. 3.6). Properties window

• Change the File Name to
Welcome1.vb.

File Name property

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.6 | Renaming the program file in the Properties window.

21

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• Each Visual Basic project has a startup object.
I h S l ti E l i d d bl li k h• In the Solution Explorer window, double click the
My Project item.

• Select Welcome1 from the Startup object drop• Select Welcome1 from the Startup object drop-
down list (Fig. 3.7).

 2009 Pearson Education, Inc. All rights reserved.
Fig. 3.7 | Setting the startup object.

22

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• Click the Welcome1.vb tab in the IDE to view the editor.
I t lliS (Fi 3 8) li t l t th t t t ith th• IntelliSense (Fig. 3.8) lists elements that start with the same
characters you’ve typed so far.

Highlighted member

Member list

Partially-typed member

Tool tip describes

g g

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.8 | IntelliSense feature of Visual Basic Express.

Tabs to view all of a class’s member or
only those that are most commonly used

p
highlighted member

23

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• When you type (after Console.WriteLine),
the Parameter Info window is displayed (Fig 3 9)the Parameter Info window is displayed (Fig. 3.9).

– This contains information about possible method parameters.
– Arrows scroll through overloaded versions of the method. ows sc o t oug ove oaded ve s o s o t e et od.

Down arrow

Parameter Info window

Up arrow

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.9 | Parameter Info window.

24

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• File > Save All to display the Save Project
dialog (Fig 3 10)dialog (Fig. 3.10).

Fig. 3.10 | Save Project dialog.

 2009 Pearson Education, Inc. All rights reserved.

25

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• Select Build > Build Welcome1.
• Select Debug > Start Debugging• Select Debug > Start Debugging.
• To enable the window to remain on the screen,

type Ctrl + F5 (Fig. 3.11).

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.11 | Executing the program shown in Fig. 3.1.

26

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

Running the Program from the Command Prompt
Cli k th Wi d Start b tt () th l t All Programs• Click the Windows Start button (), then select All Programs
> Accessories > Command Prompt (Fig. 3.12).

• Command Prompt windows normally have black backgrounds
and white text.

Default prompt displays when
Command Prompt is opened

Fi 3 12 E ti th h i Fi 3 1 f C d P t

User enters the next
command here

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.12 | Executing the program shown in Fig. 3.1 from a Command Prompt.

27

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• Enter the command cd followed by the directory where
the application’s exe file is locatedthe application s .exe file is located.

• Enter the name of the .exe file to run the application.
Updated prompt showing
the new current directory

Type this to change to the
application’s directory

Application’s output Closes the Command
Prompt window

Type this to run the Welcome1.exe application

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.13 | Executing the program shown in Fig. 3.1 from a Command Prompt.

28

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

• When you mistype a line of code, the IDE may generate a
syntax errorsyntax error.

• The IDE underlines the error in blue and provides a
description in the Error List window.description in the Error List window.

• Select View > Error List to view this window
(Fig. 3.14). (g)

 2009 Pearson Education, Inc. All rights reserved.

29

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

Omitted parenthesis character (syntax error)

Error description(s) Error List window
Blue underline indicates a syntax error

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.14 | Syntax error indicated by the IDE.

Error description(s) Error List window

30

3.3 Creating Your First Program in Visual
Basic Express (Cont.)Basic Express (Cont.)

Error-Prevention Tip 3.1
One syntax error can lead to multiple entries in the

i iError List window. Each error that you address
could eliminate several subsequent error messages.
So, when you see a particular error you know how to fix,So, when you see a particular error you know how to fix,
correct it—this may make the other errors disappear.

 2009 Pearson Education, Inc. All rights reserved.

31
Outline

C l th d W it iti th t t t th i ht
Welcome2.vb

• Console method Write positions the output to the right
of the last character displayed (Fig. 3.15).

 1 ' Fig. 3.15: Welcome2.vb

 2 ' Displaying a line of text with multiple statements.

 3
 4 Module Welcome2

 5
 6 Sub Main()

 7
8 Console Write("Welcome to ")

Output does not move
 8 Console.Write(Welcome to)

 9 Console.WriteLine("Visual Basic!")

10
11 End Sub ' Main
12

to a new line.

Output appears after the
last character displayed
with Write.

13 End Module ' Welcome2

Welcome to Visual Basic!

Fig 3 15 | Displaying a line of text with multiple statements

 2009 Pearson Education,
Inc. All rights reserved.

Fig. 3.15 | Displaying a line of text with multiple statements.

Outline• Declarations begin with keyword Dim (Fig. 3.16).
– number1, number2 and total are the names of

 1 ' Fig. 3.16: Addition.vb

 2 ' Addition program.

Addition.vb

(1 of 2)

,
variables of type Integer.

p g

 3
 4 Module Addition

 5
 6 Sub Main()

7 7
 8 ' variables used in the addition calculation

 9 Dim number1 As Integer

10 Dim number2 As Integer
11 Dim total As Integer

Declaring variables
of type Integer

12
13 ' prompt for and read the first number from the user
14 Console.Write("Please enter the first integer: ")
15 number1 = Console.ReadLine()

The user is prompted
to enter information.

ReadLine bt iReadLine obtains a
value entered by the user.

Fig. 3.16 | Addition program that adds two integers entered by the user. (Part 1 of 2.)

 2009 Pearson Education,
Inc. All rights reserved.

33
Outline

16
17 ' prompt for and read the second number from the user

Addition.vb

(2 of 2)
p p

18 Console.Write("Please enter the second integer: ")
19 number2 = Console.ReadLine()
20
21 total = number1 + number2 ' add the numbers
2222
23 Console.WriteLine("The sum is " & total) ' display the sum
24
25 End Sub ' Main
26
27 End Module ' Addition

Please enter the first integer: 45
Please enter the second integer: 72
The sum is 117

Fig. 3.16 | Addition program that adds two integers entered by the user. (Part 2 of 2.)

 2009 Pearson Education,
Inc. All rights reserved.

34

3.5 Adding Integers (Cont.)

• Types already defined in Visual Basic are keywords
known as primitive types (Fig. 3.17).p yp (g)

 Primitive Types

 Boolean Byte Char Date Decimal

 Double Integer Long SByte Short

Fig. 3.17 | Primitive Types in Visual Basic

 Double Integer Long SByte Short

 Single String UInteger ULong UShort

 2009 Pearson Education, Inc. All rights reserved.

35

3.5 Adding Integers (Cont.)
Good Programming Practice 3.3
Choosing meaningful variable names helps a program to
be “self-documenting”—the program can be understood by others
without the use of documentation manuals or excessive comments.

Good Programming Practice 3 4Good Programming Practice 3.4
A common convention is to have the first word in a variable-name
identifier begin with a lowercase letter. Every word in the name
after the first word should begin with a uppercase letter. Using
these conventions helps make your programs more readable.

Good Programming Practice 3.5Good Programming Practice 3.5
Declaring each variable on a separate line allows for easy insertion
of an end-of-line comment next to each declaration. We follow this

i

 2009 Pearson Education, Inc. All rights reserved.

convention.

36

3.5 Adding Integers (Cont.)

• A prompt directs the user to take a specific action.
R dLi h d i f• ReadLine causes the program to pause and wait for user
input.

• The number is assigned to variable number1 by an• The number is assigned to variable number1 by an
assignment, =.

G d P i P ti 3 6Good Programming Practice 3.6
The Visual Basic IDE places a space on either side of a
binary operator to make the operator stand out andbinary operator to make the operator stand out and
improve the readability of the statement.

 2009 Pearson Education, Inc. All rights reserved.

37

3.5 Adding Integers (Cont.)

• If the user types a non-integer value, a run-time error
occursoccurs.

• An error message is displayed (Fig. 3.18) if you ran the
application using Debug > Start Debugging.application using Debug > Start Debugging.

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.18 | Dialog displaying a run-time error.

38

3.5 Adding Integers (Cont.)

• The string concatenation operator, &, is used to combine
values into stringsvalues into strings.

"The sum is " & total

• The string concatenation operator is called a binaryThe string concatenation operator is called a binary
operator.

G d P i P ti 3 7Good Programming Practice 3.7
Follow a method’s End Sub with an end-of-line
comment containing the name of the method thatcomment containing the name of the method that
the End Sub terminates.

 2009 Pearson Education, Inc. All rights reserved.

39

3.6 Memory Concepts

• Variable names correspond to locations in memory.
b 1 C l R dLi ()number1 = Console.ReadLine()

• Input data is placed into a memory location to which theInput data is placed into a memory location to which the
name number1 has been assigned (Fig. 3.19).

Fi 3 19 M l i h i d l f i bl b 1Fig. 3.19 | Memory location showing name and value of variable number1.

 2009 Pearson Education, Inc. All rights reserved.

40

3.6 Memory Concepts (Cont.)

• Whenever a value is placed in a memory location, this value
replaces the value previously stored in that locationreplaces the value previously stored in that location.

• Suppose that the user enters 72:
number2 = Console.ReadLine()

• The Integer value 72 is placed into location number2, and
(Fi 3 20)memory appears (Fig. 3.20)

Fig 3 20 | Memory locations after values for variables number1

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.20 | Memory locations after values for variables number1
and number2 have been input.

41

3.6 Memory Concepts (Cont.)

• The program adds number1 and number2 and
places their total into variable totalplaces their total into variable total.

total = number1 + number2

• After total is calculated, memory appears (Fig. 3.21).After total is calculated, memory appears (Fig. 3.21).
• The values of number1 and number2 appear exactly as they

did before the calculation.

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.21 | Memory locations after an addition operation.

42

3.7 Arithmetic
• Arithmetic operators are summarized in Fig. 3.22.
• Some of the symbols are not used in algebra. y g

 Visual Basic operation Arithmetic
operator

Algebraic
expression

Visual Basic
expression

 f 7 Addition + f + 7 f + 7

 Subtraction – p – c p - c

 Multiplication * bm b * m

 Division (floating point)

/ or orxx y x ÷ y

y

x / y

 Division (integer) \ none v \ u

Modulus Mod r mod s r Mod s Modulus Mod r mod s r Mod s

 Exponentiation ^ qp q ^ p

 Unary minus - –e –e

Unary plus + +g +g

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.22 | Arithmetic operators.

 Unary plus +g g

43

3.7 Arithmetic (Cont.)

• Integer division takes two Integer operands and yields
an Integer resultan Integer result.

– Floating-point number operands are rounded to the nearest
whole number.

– Any fractional part in the result is discarded—not rounded.

• The Mod operator yields the remainder after division.
• Expressions such as must be written as a / b

to appear in a straight line.

a
b

 2009 Pearson Education, Inc. All rights reserved.

44

3.7 Arithmetic (Cont.)

Common Programming Error 3.2
U i th i t di i i t (\) h thUsing the integer division operator (\) when the
floating-point division operator (/) is expected can
lead to incorrect results.lead to incorrect results.

Error-Prevention Tip 3 2Error-Prevention Tip 3.2
Ensure that each integer division operator has
only integer operands.only integer operands.

 2009 Pearson Education, Inc. All rights reserved.

45

3.7 Arithmetic (Cont.)

Operator(s) Operation Order of evaluation (precedence) Operator(s) Operation Order of evaluation (precedence)

 ^ Exponentiation Evaluated first. If there are several such
operators, they are evaluated from left to right.

 + – Sign operations Evaluated second If there are several such +, Sign operations Evaluated second. If there are several such
operators, they are evaluated from left to right.

 *, / Multiplication
and Division

Evaluated third. If there are several such
operators, they are evaluated from left to right.

 \ Integer Evaluated fourth If there are several such \ Integer
division

Evaluated fourth. If there are several such
operators, they are evaluated from left to right.

 Mod Modulus Evaluated fifth. If there are several such
operators, they are evaluated from left to right.

 Addi i d E l d i h If h l h

Fig. 3.23 | Precedence of arithmetic operators.

 +, – Addition and
Subtraction

Evaluated sixth. If there are several such
operators, they are evaluated from left to right.

 2009 Pearson Education, Inc. All rights reserved.

46

3.7 Arithmetic (Cont.)

• Consider several expressions with the rules of operator
precedence:precedence:

Algebra:
m = a + b + c + d + e

5

Visual Basic: m = (a + b + c + d + e) / 5

• Parentheses are required because floating-point division
has higher precedence than addition.

a + b + c + d + e
5

 2009 Pearson Education, Inc. All rights reserved.

47

3.7 Arithmetic (Cont.)

• The following is the equation of a straight line:

Algebra: y = mx + b
Vi l B i * bVisual Basic: y = m * x + b

N th i d b lti li ti i• No parentheses are required because multiplication is
applied first.

 2009 Pearson Education, Inc. All rights reserved.

48

3.7 Arithmetic (Cont.)

• The circled numbers under the statement indicate the
orderorder.

 2009 Pearson Education, Inc. All rights reserved.

49

3.7 Arithmetic (Cont.)

• Consider how y = ax2 + bx + c is evaluated:.

 2009 Pearson Education, Inc. All rights reserved.

50

3.7 Arithmetic (Cont.)

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.24 | Order in which a second-degree polynomial is evaluated.

51

3.7 Arithmetic (Cont.)

Good Programming Practice 3.8
R d d t th k l iRedundant parentheses can make complex expressions
easier to read.

Error-Prevention Tip 3.3
Wh t i b t th d f l ti iWhen you are uncertain about the order of evaluation in
a complex expression, use parentheses to force the order,
as you would in an algebraic expression. Doing so canas you would in an algebraic expression. Doing so can
help avoid subtle bugs

 2009 Pearson Education, Inc. All rights reserved.

52

3.8 Decision Making: Equality and
Relational OperatorsRelational Operators

• The If...Then statement allows a program to make a
decision based on the truth or falsity of a conditiondecision based on the truth or falsity of a condition.

– If the condition is met, the statement in the If...Then
statement’s body executes.

– Conditions can be formed by using equality operators and
relational operators.

 2009 Pearson Education, Inc. All rights reserved.

53

3.8 Decision Making: Equality and
Relational Operators (Cont.)Relational Operators (Cont.)

• The equality and relational operators are summarized in Fig. 3.25.

 Standard algebraic
 equality operator or
 relational operator

Visual Basic
equality or
relational operator

Example of
Visual Basic
condition

Meaning of Visual Basic
condition

 Equality operators

 = x = y x is equal to y

 <> x <> y x is not equal to y

 Relational operators

 > x > y x is greater than y

 < x < y x is less than y  y y

≥ >= x >= y x is greater than or equal to y

 ≤ <= x <= y x is less than or equal to y

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.25 | Equality and relational operators.

54

3.8 Decision Making: Equality and
Relational Operators (Cont.)Relational Operators (Cont.)

Common Programming Error 3.3
It is a syntax error to reverse the symbols in the

(i)operators <>, >= and <= (as in ><, =>, =<).
The Visual Basic IDE fixes these errors as you type.

 2009 Pearson Education, Inc. All rights reserved.

55
Outline

• The code of Fig 3 26 compares two numbers

 1 ' Fig. 3.26: Comparison.vb

 2 ' Using equality and relational operators.

Comparison.vb

(1 of 4)

The code of Fig. 3.26 compares two numbers.

g q y p

 3
 4 Module Comparison

 5
 6 Sub Main()

7 7
 8 ' declare Integer variables for user input

 9 Dim number1 As Integer

10 Dim number2 As Integer
11
12 ' read first number from user
13 Console.Write("Please enter first integer: ")
14 number1 = Console.ReadLine()
15

Input assigned to
Integer variable
number1

Fig. 3.26 | Performing comparisons with equality and relational operators. (Part 1 of 4.)

 2009 Pearson Education,
Inc. All rights reserved.

56
Outline

16 ' read second number from user
17 Console.Write("Please enter second integer: ")

Comparison.vb

(2 of 4)

18 number2 = Console.ReadLine()
19
20 If number1 = number2 Then ' number1 is equal to number2
21 Console.WriteLine(number1 & " = " & number2)
22 End If

Comparing number1 and
number2 for equality

22 End If
23
24 If number1 <> number2 Then ' number1 is not equal to number2
25 Console.WriteLine(number1 & " <> " & number2)
26 End If
2727
28 If number1 < number2 Then ' number1 is less than number2
29 Console.WriteLine(number1 & " < " & number2)
30 End If
31
32 If number1 > number2 Then ' number1 is greater than number2
33 Console.WriteLine(number1 & " > " & number2)
34 End If

Fig 3 26 | Performing comparisons with equality and relational operators (Part 2 of 4)

 2009 Pearson Education,
Inc. All rights reserved.

Fig. 3.26 | Performing comparisons with equality and relational operators. (Part 2 of 4.)

57
Outline

35
36 ' number1 is less than or equal to number2
37 If number1 <= number2 Then
38 Console WriteLine(number1 & " <= " & number2)

Comparison.vb

(3 of 4)
38 Console.WriteLine(number1 & <= & number2)

39 End If
40
41 ' number1 is greater than or equal to number2
42 If number1 >= number2 Then
43 Console.WriteLine(number1 & " >= " & number2)
44 End If
45
46 End Sub ' Main
47
48 End Module ' Comparison

Please enter first integer: 1000
Please enter second integer: 2000
1000 <> 2000

1000 < 2000

1000 <= 2000
 (continued on next page...)

Fig. 3.26 | Performing comparisons with equality and relational operators. (Part 3 of 4.)

 2009 Pearson Education,
Inc. All rights reserved.

g 3 6 | e o g co pa so s t equa ty a d e at o a ope ato s (a t 3 o)

58

 (continued from previous page…)
Please enter first integer: 515

Outline

g

Please enter second integer: 49
515 <> 49

515 > 49

515 >= 49

Comparison.vb

(4 of 4)

Please enter first integer: 333
Please enter second integer: 333
333 = 333

333 <= 333

333 >= 333

Fig 3 26 | Performing comparisons with equality and relational operators (Part 4 of 4)

Good Programming Practice 3.9
Vi l B i i d t th t t t i th b d f

Fig. 3.26 | Performing comparisons with equality and relational operators. (Part 4 of 4.)

Visual Basic indents the statements in the body of an
If…Then statement to emphasize the body statements
and enhance program readability. You should also follow
thi ti h i i th l

 2009 Pearson Education,
Inc. All rights reserved.

this convention when programming in other languages.

59

3.8 Decision Making: Equality and
Relational Operators (Cont.)Relational Operators (Cont.)

• Figure 3.27 shows operators displayed in decreasing
order of precedence.order of precedence.

 Operators Type

 ^ e ponentiation ^ exponentiation

 + - sign operations (unary)

 * / multiplication and floating-point division

 \ di i i \ Integer division

 Mod modulus

 + - addition and subtraction (binary)

Fig. 3.27 | Precedence of the operators introduced in this chapter.

 = <> < <= > >= equality and relational

 2009 Pearson Education, Inc. All rights reserved.

60
Outline

• Message dialogs are windows that display messages to
th

SquareRoot.vb

(1 of 2)

the user.
• Class MessageBox is used to create message dialogs

(Fig. 3.28).

 1 ' Fig. 3.28: SquareRoot.vb

 2 ' Displaying the square root of 2 in a dialog.

 3

(g)

 4 Imports System.Windows.Forms ' Namespace containing class MessageBox

 5
 6 Module SquareRoot

 7
8 Sub Main()

The Sqrt method of
class Math computes 8 Sub Main()

 9
10 Dim root As Double = Math.Sqrt(2) ' calculate the square root of 2

class Math computes
the square root.

Fig. 3.28 | Displaying text in a message dialog (Part 1 of 2)Fig. 3.28 | Displaying text in a message dialog. (Part 1 of 2.)

 2009 Pearson Education,
Inc. All rights reserved.

61
Outline

11
12 ' display the results in a message dialog

SquareRoot.vb

(2 of 2)
p y g g

13 MessageBox.Show("The square root of 2 is " & root, _
14 "The Square Root of 2")
15
16 End Sub ' Main
17

Using the line-continuation
character

Method Show displays the
message dialog17

18 End Module ' SquareRoot

message dialog

Fig. 3.28 | Displaying text in a message dialog. (Part 2 of 2.)

 2009 Pearson Education,
Inc. All rights reserved.

62

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

• .NET Framework Class Library classes are grouped into
namespacesnamespaces.

• An Imports statement enables features from another
namespace.namespace.

• The Sqrt method of class Math computes the square root.
• Statements may be split over several lines using theStatements may be split over several lines using the

line-continuation character, _ .

 2009 Pearson Education, Inc. All rights reserved.

63

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

Common Programming Error 3.4
Splitting a statement over several lines without includingSplitting a statement over several lines without including
the line-continuation character is usually a syntax error.

Common Programming Error 3.5
Failure to precede the line-continuation character (_)p ()
with at least one whitespace character is a syntax error.

Common Programming Error 3.6
Placing anything, including comments, on the same
i f i i i i

 2009 Pearson Education, Inc. All rights reserved.

line after a line-continuation character is a syntax error.

64

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

Common Programming Error 3.7
Splitting a statement in the middle of an identifier orSplitting a statement in the middle of an identifier or
string is a syntax error.

Good Programming Practice 3.10Good Programming Practice 3.10
If a single statement must be split across lines, choose
breaking points that make sense, such as after a comma in a
comma-separated list or after an operator in a lengthy
expression. If a statement is split across two or more lines,
indent all subsequent lines with one level of indentation.indent all subsequent lines with one level of indentation.

Good Programming Practice 3.11
Visual Basic places a space after each comma in a method’s

 2009 Pearson Education, Inc. All rights reserved.

Visual Basic places a space after each comma in a method s
argument list to make method calls more readable.

65

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

Analyzing the MessageBox
Th di l (Fi 3 29) i• The message dialog (Fig. 3.29) gives a message
to the user.

Title bar
Close box

Dialog is automatically sized
to fit the message displayed

OK button allows the

Fig. 3.29 | Message dialog displayed by calling MessageBox.Show.

OK button allows the
user to dismiss the dialog

Mouse pointer

 2009 Pearson Education, Inc. All rights reserved.

g | g g p y y g g

66

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

• Some classes in the .NET Framework must be added to the
projectproject.

• These classes are located in an assembly file, that has a .dll
(dynamic link library) file extension.

• Select Help > Index (Fig. 3.30).
• Type the class name MessageBox in the Look for: box,

d fi b NET F kand filter by .NET Framework.

 2009 Pearson Education, Inc. All rights reserved.

67

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

FilterFilter

Search string

Link to MessageBox
class documentation

Fig. 3.30 | Obtaining documentation for a class by using the Index dialog.

 2009 Pearson Education, Inc. All rights reserved.

68

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

• Click the about MessageBox class link (Fig. 3.31).
Th d t ti li t th bl th t t i• The documentation lists the assembly that contains
the class: System.Windows.Forms.dll.

MessageBox class Assembly containingdocumentation Assembly containing
class MessageBox

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.31 | Documentation for the MessageBox class.

69

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

• Add a reference to this assembly to use class
MessageBoxMessageBox.

– Click the Show All Files button of the Solution
Explorer (Fig. 3.32).

– Expand the References folder.

Show All Files button

References folder

Fig 3 32 | Viewing a project’s references

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.32 | Viewing a project s references.

70

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

• Select Project > Add Reference... and select Add
Reference to display the Add Reference dialogReference to display the Add Reference dialog
(Fig. 3.33).

• In the .NET tab, select System.Windows.Forms.dll.
a) Add Reference dialog

displayed when you select
Project > Add Reference...

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.33 | Adding an assembly reference to a project in the
Visual Basic 2008 Express IDE. (Part 1 of 2.)

71

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

(b) Solution Explorer
before reference is added

(c) Solution Explorer
after reference is added

References folder
(expanded)

The reference we added

Fig 3 33 | Adding an assembly reference to a project in the

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.33 | Adding an assembly reference to a project in the
Visual Basic 2008 Express IDE. (Part 2 of 2.)

72

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

Common Programming Error 3.8
Including a namespace with the Imports
statement without adding a reference to the
proper assembly results in a compilation errorproper assembly results in a compilation error.

 2009 Pearson Education, Inc. All rights reserved.

73

3.9 Using a Message Dialog to Display a
Message (Cont.)Message (Cont.)

• Figure 3.34 is a Mozilla Firefox browser window
with several GUI componentswith several GUI components.

Button (displaying an icon) Menu (e.g., Help) Menu bar Combo box

Fig. 3.34 | Mozilla Firefox window with GUI components.

 2009 Pearson Education, Inc. All rights reserved.

74

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document

• A requirements document specifies the system’s purpose• A requirements document specifies the system’s purpose.
• A bank intends to install a new ATM (Fig. 3.35).

Screen

Cash dispenser

Keypad

Deposit slot

 2009 Pearson Education, Inc. All rights reserved.
Fig. 3.35 | Automated teller machine user interface.

75

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

Th ft ill i l t th f ti lit f th• The software will simulate the functionality of the
hardware devices.

– The screen prompts the user to enter an account number.The screen prompts the user to enter an account number.
– The screen prompts the user to enter the PIN associated with the

specified account number.
– If the user enters valid input, the screen displays the main menu.

 2009 Pearson Education, Inc. All rights reserved.

76

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

Th i (Fi 3 36) di l b d ti f• The main menu (Fig. 3.36) displays a numbered option for
each of the three types of transaction.

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.36 | ATM main menu.

77

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

• If the user enters 1 the screen obtains the user’s account• If the user enters 1, the screen obtains the user’s account
balance from the bank’s database.

• The user enters 2 to make a withdrawal (Fig. 3.37).(g)

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.37 | ATM withdrawal menu.

78

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

Wh th t 3 t k d it• When the user enters 3 to make a deposit:
– The screen prompts the user to enter an amount.
– The user is told to insert a deposit envelopeThe user is told to insert a deposit envelope.
– If the deposit slot receives a deposit envelope, the ATM credits

the user’s account balance.

 2009 Pearson Education, Inc. All rights reserved.

79

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

R i t th i i ht i l d i t i ith• Requirements gathering might include interviews with
potential users and specialists.

• The software life cycle specifies the stages from the time• The software life cycle specifies the stages from the time
it is conceived to the time at which it is retired from use.

– Waterfall models perform each stage once in succession
– Iterative models may repeat one or more stages several times

throughout a product’s life cycle.

 2009 Pearson Education, Inc. All rights reserved.

80

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

• A use case diagram (Fig 3 38) models the interactions• A use case diagram (Fig. 3.38) models the interactions
between a system’s clients and the system.

• The stick figure represents the role of an actor, which interacts g p ,
with the system.

 2009 Pearson Education, Inc. All rights reserved.

Fig. 3.38 | Use case diagram for the ATM system from the user’s perspective.

81

3.10 Software Engineering Case Study:
Examining the ATM RequirementsExamining the ATM Requirements
Document (Cont.)

A t i t f t th t i t t t l• A system is a set of components that interact to solve
a problem.

– System structure describes the system’s objects and theirSystem structure describes the system s objects and their
interrelationships.

– System behavior describes how the system changes as its
bj t i t t ith thobjects interact with one another.

 2009 Pearson Education, Inc. All rights reserved.

