Chapter 1: Introduction

Requirements Engineering
Objectives

In this chapter, you will learn about:

- The importance of requirements
- The role of RE in Software Development Lifecycle
Problem Statement

- **What** is the problem that you are trying to solve?

“The hardest single part of building a system is deciding **what** to build…..No other part of the work so cripples the resulting system if done wrong. No other part is more difficult to rectify later”

F. P. Brooks
Typical Project
Requirements

- Requirements form the basis for:
 - Project Planning
 - Remember: P-P-P-P-P
 - Risk Management
 - Acceptance Testing
 - Change Control
SW Engineering Projects

Overview

- Software Development usually involves the following stages:

<table>
<thead>
<tr>
<th>STAGES</th>
<th>OWNER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements Analysis & Design</td>
<td>Requirements/Systems Engineer</td>
</tr>
<tr>
<td>Systems Design</td>
<td>Systems Architect</td>
</tr>
<tr>
<td>Program Design</td>
<td>Programmer</td>
</tr>
<tr>
<td>Writing the Program (coding)</td>
<td>Programmer</td>
</tr>
<tr>
<td>Unit Testing</td>
<td>Systems Tester/Verification</td>
</tr>
<tr>
<td>Integration Testing</td>
<td>Systems Tester/Verification</td>
</tr>
<tr>
<td>System Testing</td>
<td>Trainer</td>
</tr>
<tr>
<td>System Delivery</td>
<td>Trainer & Customer Support</td>
</tr>
<tr>
<td>Maintenance</td>
<td></td>
</tr>
</tbody>
</table>

We will talk about the relationships between the RE and other SW team members shortly.
SW Engineering Projects

Common Issues

- Most project affecting and critical issues are in the Requirements arena

- Major gaps in Requirements tend to be critical to a project success

- Concise, on-time requirements are a necessary foundation for a successful architecture
 - Quality before Design

- Producing a good set of requirements is likely the most difficult job in software systems development
SW Engineering Projects
Recurring Problems

- Lack of Functional Requirements
 - No Requirements have been written
 - Usage Scenario Not Understood and Documented
 - Functionality of the System Incomplete or Underestimated
 - Customer unknown and not contacted
 - No Acceptance Criteria for the System
SW Engineering Projects
Recurring Problems

- Lack of Performance and capacity Requirements
 - Number and/or Types of Users Undocumented
 - Transaction and data Volumes Unknown

- Lack of OA&M Requirements
 - No OA&M Requirements Documented
 - No Availability Requirements Documented
 - Availability not Tied to Customer Need
 - “Want 7 x24”, but no business need exists
SW Engineering

Reasons for Project Failure

Factors directly related to requirements are identified with **

Sources:
Standish Group, 1995 & 1996
Scientific American, September 1994
Factors directly related to requirements are identified with **

Sources:
Standish Group, 1995 & 1996
Scientific American, September 1994
Good Requirements describe **what** the system is supposed to do, NOT **how** the system is supposed to do it

- **Remember the 5 W’s (and an H)**
 - Who → Customer
 - **WHAT** → Requirements
 - Where → Facilities Plan
 - When → Project Plan
 - Why → Problem Statement
 - How → Architecture & Design
Requirements are **NOT**

- Requirements are **NOT** a description of *how* the system provides the needed functionality.
- Requirements should **NOT** specify technology or implementation except where those items are customer constraints
 - Implied or hidden
 - “Do such & so?” Such & So must be explicitly stated
 - Invalidated Assumptions
 - Over extended Assumptions
 - Do not assume that requirements for this system or this customer are the same as they were for that system or that customer
 - Indecisive
 - Words like “would”, “could”, “should”, “most of the time”, “flexible” do not belong in requirements document. Remember an item **will** or **will not** be in the system
 - Inconsistent or Conflicting
What Requirements ARE

- Description of **WHAT** the entire system is supposed to do:
 - Reflective of customer need
 - Constraints imposed by the customer
 - Constraints imposed by business and marketing needs
 - Unambiguous (clear and concise)
 - Complete
 - Prioritized
 - Traceable
 - Implementable within project constraints (e.g., schedule, budget, etc.)
 - Formally accepted by the customer, systems engineering and development, system test, and under change control

- Requirements are sometimes referenced for contracts (contractual documents)
- Sometimes considered to be contract between systems engineering and development
Problem Statement

What the Customer Asked For
Requirements Engineering
Solution Space for the Problem

What the Customer asked for

OA&M
Error Recovery
Performance

Is customer the same as end-user?
Customer Needs

End-User Needs

- Customer and end-user are not always the same person
 - The end-user is the person who interacts with the system to get the job done
 - The customer typically pays for the system
- Customer and End-user may have similar or conflicting objectives
- Sometimes delighting your End user delights the customer
- But who determines the fate of the system?
 - The customer because s/he pays for the job
 - Very important to get customer involved in the initial phase of RE, if at all possible
SW Development Lifecycle

Example Model

- **V Model**: If problems are found during Verification or Validation Phase, the LHS of the V is re-executed to fix the problem
 - More explicit of re-work (unlike Waterfall Model)
Prototyping: Allows all or part of the system to be constructed quickly in the hopes of clarifying/understand issues

- Iterate requirements and design to ensure common understanding
Role of Requirements Engineering

- Requirements influence the whole Development from Start to End:
 - Testing is with respect to the requirements
 - A system is accepted against Stakeholder’s Requirements during Acceptance Test Phase

The V-Model illustrates relationships between Initial and End Phases in SW Development

** Partitioning of System Req. after System design phase

The V-Model illustrates relationships between Initial and End Phases in SW Development
SW Lifecycle
Role of Requirements Engineering

- Main Concerns of RE at each layer
 - An abstraction of the requirements engineering document

An Abstraction of RE: A layered Approach

Initial Phase SW Dev

Stakeholder Requirements
Define stakeholders needs; Validate the product

Acceptance Test

System Test

System Requirements
Define what the system must do to satisfy stakeholders’ needs; Validate the system

Integration Test

Subsystem Requirements
Optimize cost-benefits Qualify requirements

Component Requirements
Allocate requirements Qualify components

Component Test

Tail-end Phase SW Dev

Acceptance
Test

System
Test

Integration
Test

Component
Test

An Abstraction of RE: A layered Approach
SW Lifecycle
Role of Requirements Engineering

- RE provides communications amongst projects
 - Re-use of artifacts
 - Stakeholder Requirements (non-tech description) used by Management for contracts, bids, proposal etc
 - System requirements used/referenced by architects, developers in describing at a high-level their piece of the project
Requirements Traceability: The ability to understand how High-level requirements (goals, objectives etc) are transformed into low-level requirements (mapping between layers of information: one-to-many usually)

- Stakeholders req. met by system req. → partitioned into subsystem req. → implemented as components
- Ability to assess impact changes introduced at various phases of development sw lifecycle (change management)
- Ability to track progress

Using traceability, track the impact of a change in System Requirements as an example
Traceability

Role of Requirements Engineering

- **Traceability**: Use Requirements Management Tools (e.g., Doors) to link requirements statements in one layer with statement in another – Drag & Drop tool
 - Easy to answer questions like: What is the impact of making changes to one or more requirements? Who will be affected by these changes and what is the [derived] cost of implementing the change (Cost-benefit analysis)?

![Diagram showing traceability between Stakeholder Requirements, System Requirements, Subsystem Requirements, Component Requirements, Acceptance Test Plan, System Test Plan, Integration Test Plan, and Component Test Plan.]