Long division to synthetic division

Author(s): Bao Qi Feng

Source: The Mathematics Teacher, Vol. 97, No. 5 (MAY 2004), p. 308
Published by: National Council of Teachers of Mathematics
Stable URL: http://www.jstor.org/stable/20871604
Accessed: 27-03-2018 15:23 UTC

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

Your use of the JSTOR archive indicates your acceptance of the Terms \& Conditions of Use, available at http://about.jstor.org/terms

National Council of Teachers of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Mathematics Teacher

READER REFLECTIONS

We appreciate the interest and value the views of those who write. Readers commenting on articles are encouraged to send copies of their correspondence to the authors. For publication: All letters for publication are acknowledged, but because of the large number submitted, we do not send letters of acceptance or rejection. Please TYPE AND DOUBLE-SPACE all letters to be considered for publication. Letters should not exceed 250 words and are subject to abridgement. At the end of the letter, include your name and affiliation, if any, including zip or postal code and e-mail address, in the style of the section.

New back-to-school issue

Look for the first August issue of the Mathematics Teacher, which will be coming to you in late July. This shift in journal schedule meets the needs of increasing numbers of teachers who return to the classroom in early August. The journal will be there while you plan your school year. Since the December and January issues will be combined, you will continue to receive nine issues of the Mathematics Teacher each year.

Long division to synthetic division

Using synthetic division allows us to easily find the quotient and remainder when we divide a polynomial by a linear divisor $x-a$. Naturally, we can ask where the synthetic division comes from. What is the relationship between it and long division? We use an example to explain how synthetic division evolved from long division. In the example, we find the quotient $Q(x)$ and the remainder r, if we
divide $2 x^{4}-5 x^{3}-7 x^{2}+10 x+14$ by $x-3$, as shown in figure 1 (Feng).

In the last representation, we only perform multiplication and addition. The quotient $Q(x)$ is $2 x^{3}+x^{2}-4 x-2$, and the remainder r is 8 . The process illustrates why the division is called synthetic.

Bao Qi Feng

bfeng@tusc.kent.edu
Kent State University
New Philadelphia, OH 44663

$$
1 x-3 \begin{array}{r}
\frac{2 x^{3}+1 x^{2}-4 x-2}{2 x^{4}-5 x^{3}-7 x^{2}+10 x+14} \\
\frac{2 x^{4}-6 x^{3}}{+1 x^{3}-7 x^{2}} \\
\frac{+1 x^{3}-3 x^{2}}{-4 x^{2}+10 x} \\
\frac{-4 x^{2}+12 x}{-2 x+14} \\
-2 x+6 \\
\hline
\end{array}
$$

$$
1 - 3 \longdiv { 2 + 1 - 4 - 2 } \begin{array} { l }
{ 2 - 5 - 7 + 1 0 + 1 4 }
\end{array}
$$

Eliminate $\overrightarrow{\text { all repeat terms }}$

-6
+1
$\frac{-4}{-4}$
$\frac{-2}{-2}$
$\frac{8}{8}$

$1 - 3 \longdiv { \begin{array} { r } { 2 + 1 - 4 - 2 } \\ { 2 - 5 - 7 + 1 0 + 1 4 } \\ { - 6 - 3 + 1 2 + 6 } \end{array} }$
$\xrightarrow[\text { from } 2^{\text {nd }} \text { to } 4^{\text {th }} \text { row }]{\text { Bring down the }} \quad \xrightarrow{2+1-4-2+8}$
$-3) 2-5-7+10+14$
$\xrightarrow[\text { erase the number } 1]{\text { In the divisor }}$
$\frac{-6-3+12+6}{2+1-4-2+8}$
In the divisor
replace -3 by 3

Fig. 1 (Feng)

