

THE VALUE OF BANACH LIMITS ON A CERTAIN SEQUENCE OF ALL RATIONAL NUMBERS IN THE INTERVAL (0, 1)

(Dedicated to the Memory of Professor Joe Diestel)

Bao Qi Feng

Department of Mathematical Sciences Kent State University Tuscarawas, 330 University Dr. NE New Philadelphia, OH 44663, U. S. A. e-mail: bfeng@tusc.kent.edu

Abstract

In this article, we show that a certain sequence r of all rational numbers in the interval (0, 1):

$$r := \{r(j)\} = \begin{cases} \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \dots, \frac{1}{\frac{m+1}{m+1}}, \dots, \frac{k}{\frac{m+1}{m+1}}, \dots, \frac{m}{\frac{m+1}{m+1}}, \dots \end{cases} \},$$

where (k, m + 1) = 1, is an almost convergent sequence in l^{∞} , and

its value of Banach limits L(r) = 1/2 for all $L \in (l^{\infty})^*$.

Received: March 2, 2019; Accepted: March 26, 2019

Communicated by Taras Goy; Editor: JP Journal of Algebra, Number Theory and Applications: Published by Pushpa Publishing House, Prayagraj, India

²⁰¹⁰ Mathematics Subject Classification: Primary 40G05, 46A35, 46B15, 54A20; Secondary 11A51.

Keywords and phrases: Banach limits, almost convergent sequences, upper weight, lower weight, weight.

Let l^{∞} be the Banach space of bounded sequences $x := \{x(n)\}_{n=1}^{\infty}$ of real numbers with norm $||x||_{\infty} = \sup |x(n)|$. A *Banach limit L* is a linear and bounded functional on l^{∞} , which satisfies the three conditions:

(a) if
$$x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$$
 and $x(n) \ge 0, n = 1, 2, ...,$ then $L(x) \ge 0$;

(b) if $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$, and *T* is the *translation operator*: $Tx := \{x(2), x(3), ...\}$, then L(x) = L(Tx);

(c) L(1) = 1, where $1 := \{1, 1, ...\}$.

We know [4, p. 310] that there are infinitely many Banach limits in $(l^{\infty})^*$, the dual space of l^{∞} . Thus, it does not make sense to speak of finding a particular value for Banach limits of a sequence $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$, because normally the different Banach limits are different functionals. It is, however, interesting that there are some elements in l^{∞} for which the values of all Banach limits are the same. For example, $L(x) = \lim_{n \to \infty} x(n)$ for any Banach limit L, if x is an element of c, where c is the Banach space of convergent sequences of real numbers with the superior norm. Furthermore, this phenomenon can happen on some elements of $l^{\infty} \setminus c$. Let

$$a := \{1, \underbrace{0, ..., 0}_{(m-1)-\text{times}}, 1, \underbrace{0, ..., 0}_{(m-1)-\text{times}}, 1, ...\}.$$

Property (b) of Banach limits implies that for any Banach limit L,

$$L(a) = L(Ta) = \cdots = L(T^{m-1}a);$$

so by linearity and property (c) of Banach limits, we have that

$$L(a) + L(Ta) + \dots + L(T^{m-1}a) = L(1) = 1.$$

Hence

$$L(a) = L(Ta) = \dots = L(T^{m-1}a) = \frac{1}{m}.$$

Moreover, if

$$b := \{\underbrace{1, ..., 1}_{k - times}, \underbrace{0, ..., 0}_{(m-k) - times}, \underbrace{1, ..., 1}_{k - times}, \underbrace{0, ..., 0}_{(m-k) - times}, ...\}$$

then

$$L(b) = L(a) + L(T^{m-1}a) + \dots + L(T^{m-k+1}a) = \frac{k}{m}$$

In [2], Lorentz called a sequence $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ almost convergent, if its all Banach limit values L(x) are the same for $L \in (l^{\infty})^*$. In this case, we call L(x) the *F*-limit of x. In his paper, Lorentz proved the following main result:

Theorem 1 (Lorentz [2, Theorem 1]). A sequence $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ is almost convergent with *F*-limit L(x) if and only if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=i}^{i+n-1} x(t) = L(x)$$

uniformly in i.

This Lorentz theorem offers a way to find values of Banach limits for almost convergent sequences in l^{∞} . Based on Lorentz [2] and Sucheston [4], we give another way [1] to find the value of Banach limits of *x*, when *x* is an almost convergent sequences in l^{∞} .

Recalling some concepts, we created in [1].

Definition 1. A real number *a* is said to be a *sub-limit* of the sequence $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$, if there exists a subsequence $\{x(n_k)\}_{k=1}^{\infty}$ of x with

limit *a*. The set of all sub-limits of *x* is denoted by S(x) and the set of all limit points of S(x) is denoted by S'(x).

Definition 2. Suppose $a \in S(x)$ for element $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$. A subsequence $\{x(n_k)\}_{k=1}^{\infty}$ of x is called an *essential subsequence* of a if it converges to a, and for any subsequence $\{x(m_t)\}_{t=1}^{\infty}$ of x with limit a, except finite entries, all its entries are entries of $\{x(n_k)\}_{k=1}^{\infty}$.

Definition 3. Let $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and let $\{x(n_k)\}_{k=1}^{\infty}$ be a subsequence of x. Define

$$w^{u}(\lbrace x(n_{k})\rbrace) = \limsup_{n \to \infty} \left(\sup_{i} \frac{A(\lbrace k : i \le n_{k} \le i + n - 1\rbrace)}{n} \right)$$

and

$$w_l(\{x(n_k)\}) = \liminf_{n \to \infty} \left(\inf_i \frac{A(\{k : i \le n_k \le i + n - 1\})}{n} \right),$$

where A(E) is the number of elements of set *E*. $w^{u}(\{x(n_{k})\})$ and $w_{l}(\{x(n_{k})\})$ are called the *upper weight* and *lower weight* of the subsequence $\{x(n_{k})\}_{k=1}^{\infty}$, respectively. If $w^{u}(\{x(n_{k})\}) = w_{l}(\{x(n_{k})\})$, then the subsequence $\{x(n_{k})\}_{k=1}^{\infty}$ is said to be *weightable* and the weight of $\{x(n_{k})\}_{k=1}^{\infty}$ is denoted by $w(\{x(n_{k})\})$, and

$$w(\{x(n_k)\}) = w^u(\{x(n_k)\}) = w_l(\{x(n_k)\}).$$

We verified [1, Theorem 1] that all essential subsequences of a, $a \in S(x)$, have the same upper weight and lower weight, respectively. They are called the *upper weight* and *lower weight* of a, and denoted by $w^{u}(a)$ and $w_{l}(a)$, respectively. The *weight* of a is denoted by w(a), if $w^{u}(a) = w_{l}(a)$. We have the following main results.

Theorem 2 [1, Theorem 4]. Suppose $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and the set of all sub-limits of x, $S(x) = \{a_1, a_2, ..., a_m\}$ is finite, where $a_i \neq a_j$, if $i \neq j$. If $w(a_t)$ exists for each t, $1 \le t \le m$, then x is almost convergent and for any Banach limit $L \in (l^{\infty})^*$,

$$L(x) = \sum_{t=1}^{m} a_t w(a_t).$$

We see that for almost convergent sequence, the value of Banach limits only dependent on the sub-limit points and their weights. From Theorem 2, we obtain a familiar formula.

Corollary 1 [1, Corollary 2]. For a given positive integer m, let

$$x = \{x_1(1), ..., x_m(1), x_1(2), ..., x_m(2), ..., x_1(n), ..., x_m(n), ...\}$$

where for each t, $\lim_{n\to\infty} x_t(n) = a_t$, $1 \le t \le m$. Then x is almost convergent and for any Banach limit $L \in (l^{\infty})^*$,

$$L(x) = \frac{a_1 + a_2 + \dots + a_m}{m}.$$

We actually proved a more general result as below.

Theorem 3 [1, Theorem 6]. Suppose $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and S(x) is infinite but countable and S'(x), the set of limit points of S(x), is a nonempty finite set. If w(a) exists for all $a \in S(x)$, then x is almost convergent and for any Banach limit $L \in (l^{\infty})^*$,

$$L(x) = \sum_{a \in S(x)} aw(a).$$

Natural question can be asked that does there exist an almost convergent sequence $x \in l^{\infty}$ for which S'(x) is an infinite set? The answer is 'Yes'. We

proved more that S'(x) can be uncountable infinite in next Theorem 4 of this article.

We need some preliminary knowledge. Suppose *m* is a positive integer. We define $\varphi(m)$ to be the number of integers *k*, $1 \le k < m$ such that (k, m) = 1, which denotes that *k* and *m* are relative primes. The function φ is called the *Euler phi function* [3, p. 54]. It is well known in number theory that if $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$, where the *p*'s are distinct primes and α_i , $1 \le i \le t$, are positive integers, then [3, p. 58, Theorem 2.7]

$$\varphi(m) = \prod_{j=1}^{t} (p_j - 1) p_j^{\alpha_j - 1}.$$

We introduce the following lemmas that we were unable to find in the literatures.

Lemma 1. For any positive integer m,

$$\frac{1}{m} \sum_{(k,m)=1,\,1 \le k < m} k = \frac{1}{2} \varphi(m).$$

Proof. Suppose that $m = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t}$. Note that there are $p_1^{\alpha_1-1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} - 1$ numbers containing the factor of p_1 among the set of $\{1, 2, 3, ..., m-1\}$:

$$p_1, 2p_1, 3p_1, ..., (p_1^{\alpha_1-1}p_2^{\alpha_2}\cdots p_t^{\alpha_t}-1)p_1,$$

there are $p_1^{\alpha_1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t} - 1$ numbers containing the factor of p_2 among the set of $\{1, 2, 3, ..., m - 1\}$:

$$p_2, 2p_2, 3p_2, ..., (p_1^{\alpha_1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t} - 1) p_2,$$

..., and there are $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t - 1} - 1$ numbers containing the factor of p_t among the set of $\{1, 2, 3, ..., m - 1\}$:

The Value of Banach Limits on a Certain Sequence ...

135

$$p_t, 2p_t, 3p_t, ..., (p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t - 1} - 1) p_t.$$

The sums of these *t* groups are

$$\frac{1}{2} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} (p_1^{\alpha_1 - 1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} - 1) = \frac{1}{2} m (p_1^{\alpha_1 - 1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} - 1),$$

$$\frac{1}{2} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} (p_1^{\alpha_1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t} - 1) = \frac{1}{2} m (p_1^{\alpha_1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t} - 1),$$

$$\vdots$$

$$\frac{1}{2} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} (p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t - 1} - 1) = \frac{1}{2} m (p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t - 1} - 1),$$

respectively.

Similarly, there are $p_1^{\alpha_1-1}p_2^{\alpha_2-1}\cdots p_t^{\alpha_t}-1$ numbers containing the factor of p_1p_2 among the set of $\{1, 2, 3, ..., m-1\}$:

$$p_1p_2, 2p_1p_2, 3p_1p_2, ..., (p_1^{\alpha_1-1}p_2^{\alpha_2-1}\cdots p_t^{\alpha_t}-1)p_1p_2,$$

..., and there are $p_1^{\alpha_1} \cdots p_{t-1}^{\alpha_{t-1}-1} p_t^{\alpha_t-1} - 1$ numbers containing the factor of $p_{t-1}p_t$ among the set of $\{1, 2, 3, ..., m-1\}$:

$$p_{t-1}p_t, 2p_{t-1}p_t, 3p_{t-1}p_t, ..., (p^{\alpha_1} \cdots p_{t-1}^{\alpha_{t-1}} p_t^{\alpha_t} - 1) p_{t-1}p_t.$$

The sums of these $\begin{pmatrix} t \\ 2 \end{pmatrix}$ groups are

$$\frac{1}{2} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} (p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t} - 1) = \frac{1}{2} m (p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t} - 1),$$

:

$$\frac{1}{2} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} (p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t - 1} - 1) = \frac{1}{2} m (p_1^{\alpha_1} \cdots p_{t-1}^{\alpha_{t-1} - 1} p_t^{\alpha_t - 1} - 1),$$

respectively, and so on.

Finally, there are $p_1^{\alpha_1-1}p_2^{\alpha_2-1}\cdots p_t^{\alpha_t-1}-1$ numbers containing the factor of $p_1p_2\cdots p_t$ among the set of $\{1, 2, 3, ..., m-1\}$:

$$p_1 p_2 \cdots p_t, 2p_1 p_2 \cdots p_t, \dots, (p_1^{\alpha_1 - 1} p_2^{\alpha_2 - 1} \cdots p_t^{\alpha_t - 1} - 1) p_1 p_2 \cdots p_t.$$

The sum of this group is

$$\frac{1}{2} p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_t^{\alpha_t} (p_1^{\alpha_1 - 1} \cdots p_t^{\alpha_t - 1} - 1) = \frac{1}{2} m (p_1^{\alpha_1 - 1} \cdots p_t^{\alpha_t - 1} - 1).$$

Thus,

$$\begin{split} &\sum_{(k,m)=1,1\leq k< m} k \\ &= \frac{m}{2} \left(m-1\right) - \frac{m}{2} \sum_{j=1}^{t} \left(p_{j}^{\alpha_{j}-1} \prod_{i\neq j} p_{i}^{\alpha_{i}} - 1 \right) \\ &+ \frac{m}{2} \sum_{1\leq i< j\leq t} \left(p_{i}^{\alpha_{i}-1} p_{j}^{\alpha_{j}-1} \prod_{k\neq i, j} p_{k}^{\alpha_{k}} - 1 \right) \\ &+ \dots + (-1)^{t-1} \frac{m}{2} \sum_{j=1}^{t} \left(p_{j}^{\alpha_{j}} \prod_{i\neq j} p_{i}^{\alpha_{i}-1} - 1 \right) + (-1)^{t} \frac{m}{2} \left(\prod_{j=1}^{t} p_{j}^{\alpha_{j}-1} - 1 \right) \\ &= \frac{m}{2} \left[\left(\prod_{j=1}^{t} p_{j}^{\alpha_{j}} - 1 \right) - \sum_{j=1}^{t} \left(p_{j}^{\alpha_{j}-1} \prod_{i\neq j} p_{i}^{\alpha_{i}} - 1 \right) \right. \\ &+ \sum_{1\leq i< j\leq t} \left(p_{i}^{\alpha_{i}-1} p_{j}^{\alpha_{j}-1} \prod_{k\neq i, j} p_{k}^{\alpha_{k}} - 1 \right) \\ &+ \dots + (-1)^{t-1} \sum_{j=1}^{t} \left(p_{j}^{\alpha_{j}} \prod_{i\neq j} p_{i}^{\alpha_{i}-1} - 1 \right) + (-1)^{t} \left(\prod_{j=1}^{t} p_{j}^{\alpha_{j}-1} - 1 \right) \right] \end{split}$$

$$\begin{split} &= \frac{m}{2} \left[\prod_{j=1}^{t} p_{j}^{\alpha_{j}} - \sum_{j=1}^{t} p_{j}^{\alpha_{j}-1} \prod_{i \neq j} p_{i}^{\alpha_{i}} \\ &+ \sum_{1 \leq i < j \leq t} p_{i}^{\alpha_{i}-1} p_{j}^{\alpha_{j}-1} \prod_{k \neq i, j} p_{k}^{\alpha_{k}} + \cdots \\ &+ (-1)^{t-1} \sum_{j=1}^{t} p_{j}^{\alpha_{j}} \prod_{i \neq j} p_{i}^{\alpha_{i}-1} + (-1)^{t} \prod_{j=1}^{t} p_{j}^{\alpha_{j}-1} - (1-1)^{t} \right] \\ &= \frac{m}{2} \prod_{j=1}^{t} p_{j}^{\alpha_{j}-1} \left[\prod_{j=1}^{t} p_{j} - \sum_{j=1}^{t} \prod_{i \neq j} p_{i} \\ &+ \sum_{1 \leq i < j \leq t} \prod_{k \neq i, j} p_{k} + \cdots + (-1)^{t-1} \sum_{j=1}^{t} p_{j} + (-1)^{t} \right] \\ &= \frac{m}{2} \prod_{j=1}^{t} p_{j}^{\alpha_{j}-1} \prod_{j=1}^{t} (p_{j}-1) = \frac{m}{2} \varphi(m). \end{split}$$

Hence,

$$\frac{1}{m} \sum_{(k,m)=1, 1 \le k < m} k = \frac{1}{2} \varphi(m). \qquad \Box$$

Lemma 2. Suppose that *m* and *l* are positive integers with l > 1. Let $n = \sum_{j=m+1}^{m+l} \varphi(j)$. Then

$$\lim_{l \to \infty} \frac{l}{n} = 0.$$

Proof. We know that [3, p. 228, Theorem 6.21]

$$\sum_{j=1}^{m} \varphi(j) = \frac{3m^2}{\pi^2} + O(m \ln m),$$

137

where f = O(g) means that there exists a constant c > 0 such that $|f(x)| \le cg(x)$ for all x in the intersection of domains of f and g. Thus,

$$n = \sum_{j=m+1}^{m+l} \varphi(j) = \frac{3(m+l)^2 - 3m^2}{\pi^2} + O((m+l)\ln(m+l)) - O(m\ln m)$$
$$= \frac{6ml + 3l^2}{\pi^2} + O((m+l)\ln(m+l)) - O(m\ln m),$$

which implies $n = O(l^2)$. Hence

$$\lim_{l \to \infty} \frac{l}{n} = 0.$$

Now we back to our goal of the following result.

Theorem 4. Define an element of l^{∞} as follows:

$$r := \{r(j)\} = \begin{cases} \frac{1}{2}, \frac{1}{3}, \frac{2}{3}, \frac{1}{4}, \frac{3}{4}, \dots, \frac{1}{m+1}, \dots, \frac{k}{m+1}, \dots, \frac{m}{m+1}, \dots \end{cases}, \\ \frac{1}{1 \text{ st block } 2 \text{ nd block } 3 \text{ rd block }}, \frac{1}{3 \text{ rd block } m \text{ rd block }}, \dots, \frac{1}{m \text{ rd block } m \text{ rd block }}, \dots \end{cases},$$

where (k, m + 1) = 1. Then S'(r) = S(r) = [0, 1] is an uncountable set, and r is an almost convergent sequence in l^{∞} and also L(r) = 1/2 for any Banach limit $L \in (l^{\infty})^*$.

Proof. It is well known that S'(r) = S(r) = [0, 1]. We just verify the remaining parts of the conclusion. For all positive integers *i*, there exists an integer *m* such that

$$\sum_{j=2}^{m} \varphi(j) \le i < \sum_{j=2}^{m+1} \varphi(j).$$

138

Let $i = \sum_{j=2}^{m} \varphi(j) + q$, where $0 \le q < \varphi(m+1)$. For any positive integers *n* and *m*, *m* is determined by *i* above, there is a positive integer *l* such that

$$\sum_{j=2}^{m+l} \varphi(j) \le i + n - 1 < \sum_{j=2}^{m+l+1} \varphi(j).$$

Let $i + n - 1 = \sum_{j=2}^{m+l} \varphi(j) + s$, where $0 \le s < \varphi(m + l + 1)$. Then

$$n = \sum_{j=2}^{m+l} \varphi(j) + s - i + 1$$

= $\sum_{j=2}^{m+l} \varphi(j) + s - \left(\sum_{j=2}^{m} \varphi(j) + q\right) + 1$
= $\sum_{j=m+1}^{m+l} \varphi(j) + s - q + 1$,

from which we have

$$\sum_{j=m+2}^{m+l} \varphi(j) = n - (\varphi(m+1) - q) - s - 1.$$

With the help of Lemma 1 and the fact of $\varphi(m) < m$ for any *m*, we have

$$\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)$$

$$\geq \frac{1}{n} \sum_{\substack{t=\sum_{j=2}^{m+1} \phi(j) \\ t=\sum_{j=2}^{m+1} \phi(j)+1}} r(t)$$

$$= \frac{1}{n} \left[\frac{1}{m+2} \sum_{(k,m+2)=1,1 \le k < m+2} k + \dots + \frac{1}{k+l} \sum_{(k,m+l)=1,1 \le k < m+l} k \right]$$

$$= \frac{1}{n} \left[\frac{1}{2} \varphi(m+2) + \dots + \frac{1}{2} \varphi(m+l) \right] = \frac{1}{2n} \sum_{l=m+2}^{m+l} \varphi(l)$$

$$= \frac{n - (\varphi(m+1) - q) - s - 1}{2n}$$

$$\ge \frac{1}{2} - \frac{(\varphi(m+1) - q) + \varphi(m+l+1) + 1}{2n}$$

$$\ge \frac{1}{2} - \frac{(m+1) + (m+l+1) + 1}{2n}$$

$$= \frac{1}{2} - \frac{2m+l+3}{2n} = \frac{1}{2} - \frac{2m+3}{2n} - \frac{l}{2n},$$

which holds for any positive integers *n* and any fixed positive integer *i*. We know that *m* is fixed when *i* is fixed, so $\lim_{n\to\infty} \frac{2m+3}{2n} = 0$. Note that *l* goes to infinity as *n* goes to infinity. By Lemma 2, we have

$$\liminf_{n \to \infty} \left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \right) \ge \liminf_{n \to \infty} \left(\frac{1}{2} - \frac{2m+3}{2n} - \frac{l}{2n} \right) = \frac{1}{2}$$

for all $i \in N$.

On the other hand, we have

$$\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)$$

$$\leq \frac{1}{n} \sum_{\substack{t=\sum_{j=2}^{m} \phi(j)+1}}^{\sum_{j=2}^{m+l+1} \phi(j)} r(t)$$

140

The Value of Banach Limits on a Certain Sequence ...

141

$$\begin{split} &= \frac{1}{n} \Biggl[\frac{1}{m+1} \sum_{(k, m+1)=1, 1 \le k < m+1} k + \dots + \frac{1}{k+l+1} \sum_{(k, m+l+1)=1, 1 \le k < m+l+1} k \Biggr] \\ &= \frac{1}{n} \Biggl[\frac{1}{2} \varphi(m+1) + \dots + \frac{1}{2} \varphi(m+l+1) \Biggr] \\ &= \frac{1}{2n} \sum_{t=m+1}^{m+l+1} \varphi(t) = \frac{n + \varphi(m+l+1) + q - s - 1}{2n} \\ &= \frac{1}{2} + \frac{(\varphi(m+l+1) - s) + q - 1}{2n} \\ &\leq \frac{1}{2} + \frac{m+l+1 + m+1 - 1}{2n} = \frac{1}{2} + \frac{2m+1}{2n} + \frac{l}{2n}, \end{split}$$

which holds for any positive integer *n* and any fixed positive integer *i*. We know that $\lim_{n\to\infty} \frac{2m+1}{2n} = 0$. Using Lemma 2 again, we have

$$\limsup_{n \to \infty} \left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \right) \le \limsup_{n \to \infty} \left(\frac{1}{2} + \frac{2m+1}{2n} + \frac{l}{2n} \right) = \frac{1}{2}$$

for all $i \in N$.

Summarizing the discussion above, we obtain that

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=i}^{i+n-1} r(t) = \frac{1}{2}$$

for all $i \in N$. Thus,

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \right) = \lim_{n \to \infty} \left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \right) = \frac{1}{2}.$$

Using Lorentz's formula (6) [2, p.169], we have:

$$\lim_{n \to \infty} \left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \right) \le L(r) \le \lim_{n \to \infty} \left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \right)$$

for all Banach limits $L \in (l^{\infty})^*$. Hence, $L(r) = \frac{1}{2}$, for all $L \in (l^{\infty})^*$ and r is an almost convergent sequence in l^{∞} .

From the argument of Theorem 4, we have a new corollary of Lorentz' theorem as follows:

Corollary 2. Suppose $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$. If the following limits exist with the same value l,

$$\lim_{n \to \infty} \frac{1}{n} \sum_{t=i}^{i+n-1} x(t) = l$$

for all positive integers $i \in N$, then x is an almost convergent sequence in l^{∞} and L(x) = l for all Banach limits $L \in (l^{\infty})^*$.

Notice. Corollary 2 is a complement of Theorem 6 in [1], which helps us in verifying and finding the value of Banach limits for an almost convergent sequence $x := \{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ with S'(x) as an uncountable set.

References

- B. Q. Feng and J. L. Li, Some estimations of Banach limits, J. Math. Anal. Appl. 323(1) (2006), 481-496.
- [2] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
- [3] M. B. Nathanson, Elementary methods in number theory, Springer 195 GTM, 2000.
- [4] L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308-311.