Far East Journal of Mathematical Sciences (FJMS)
© 2019 Pushpa Publishing House, Prayagraj, India http://www.pphmj.com
http://dx.doi.org/10.17654/MS118020129
Volume 118, Number 2, 2019, Pages 129-142

THE VALUE OF BANACH LIMITS ON A CERTAIN SEQUENCE OF ALL RATIONAL NUMBERS
 IN THE INTERVAL $(0,1)$

(Dedicated to the Memory of Professor Joe Diestel)

Bao Qi Feng

Department of Mathematical Sciences
Kent State University
Tuscarawas, 330 University Dr. NE
New Philadelphia, OH 44663, U. S. A.
e-mail: bfeng@tusc.kent.edu

Abstract

In this article, we show that a certain sequence r of all rational numbers in the interval $(0,1)$: $$
\begin{aligned} r & :=\{r(j)\} \\ & =\left\{\begin{array}{c} \underbrace{\frac{1}{2}}_{\text {1stock }}, \underbrace{\frac{1}{3}, \frac{2}{3}}_{\text {2nd block }}, \underbrace{\frac{1}{4}, \frac{3}{4}}_{\text {3rd block }}, \ldots, \underbrace{\frac{1}{m+1}}_{m \text { th block }}, \ldots, \frac{k}{m+1}, \ldots, \frac{m}{m+1} \end{array}, \ldots\right\}, \end{aligned}
$$ where $(k, m+1)=1$, is an almost convergent sequence in l^{∞}, and its value of Banach limits $L(r)=1 / 2$ for all $L \in\left(l^{\infty}\right)^{*}$.

Received: March 2, 2019; Accepted: March 26, 2019
2010 Mathematics Subject Classification: Primary 40G05, 46A35, 46B15, 54A20; Secondary 11A51.

Keywords and phrases: Banach limits, almost convergent sequences, upper weight, lower weight, weight.
Communicated by Taras Goy; Editor: JP Journal of Algebra, Number Theory and Applications: Published by Pushpa Publishing House, Prayagraj, India

Let l^{∞} be the Banach space of bounded sequences $x:=\{x(n)\}_{n=1}^{\infty}$ of real numbers with norm $\|x\|_{\infty}=\sup |x(n)|$. A Banach limit L is a linear and bounded functional on l^{∞}, which satisfies the three conditions:
(a) if $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and $x(n) \geq 0, n=1,2, \ldots$, then $L(x) \geq 0$;
(b) if $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$, and T is the translation operator: $T x:=$ $\{x(2), x(3), \ldots\}$, then $L(x)=L(T x)$;
(c) $L(1)=1$, where $1:=\{1,1, \ldots\}$.

We know [4, p. 310] that there are infinitely many Banach limits in $\left(l^{\infty}\right)^{*}$, the dual space of l^{∞}. Thus, it does not make sense to speak of finding a particular value for Banach limits of a sequence $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$, because normally the different Banach limits are different functionals. It is, however, interesting that there are some elements in l^{∞} for which the values of all Banach limits are the same. For example, $L(x)=\lim _{n \rightarrow \infty} x(n)$ for any Banach limit L, if x is an element of c, where c is the Banach space of convergent sequences of real numbers with the superior norm. Furthermore, this phenomenon can happen on some elements of $l^{\infty} \backslash c$. Let

$$
a:=\{1, \underbrace{0, \ldots, 0}_{(m-1) \text {-times }}, 1, \underbrace{0, \ldots, 0}_{(m-1) \text {-times }}, 1, \ldots\} .
$$

Property (b) of Banach limits implies that for any Banach limit L,

$$
L(a)=L(T a)=\cdots=L\left(T^{m-1} a\right)
$$

so by linearity and property (c) of Banach limits, we have that

$$
L(a)+L(T a)+\cdots+L\left(T^{m-1} a\right)=L(1)=1 .
$$

Hence

$$
L(a)=L(T a)=\cdots=L\left(T^{m-1} a\right)=\frac{1}{m} .
$$

Moreover, if

$$
b:=\{\underbrace{1, \ldots, 1}_{k \text {-times }}, \underbrace{0, \ldots, 0}_{(m-k) \text {-times }}, \underbrace{1, \ldots, 1}_{k \text {-times }}, \underbrace{0, \ldots, 0}_{(m-k) \text {-times }}, \ldots\},
$$

then

$$
L(b)=L(a)+L\left(T^{m-1} a\right)+\cdots+L\left(T^{m-k+1} a\right)=\frac{k}{m} .
$$

In [2], Lorentz called a sequence $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ almost convergent, if its all Banach limit values $L(x)$ are the same for $L \in\left(l^{\infty}\right)^{*}$. In this case, we call $L(x)$ the F-limit of x. In his paper, Lorentz proved the following main result:

Theorem 1 (Lorentz [2, Theorem 1]). A sequence $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ is almost convergent with F-limit $L(x)$ if and only if

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=i}^{i+n-1} x(t)=L(x)
$$

uniformly in i.
This Lorentz theorem offers a way to find values of Banach limits for almost convergent sequences in l^{∞}. Based on Lorentz [2] and Sucheston [4], we give another way [1] to find the value of Banach limits of x, when x is an almost convergent sequences in l^{∞}.

Recalling some concepts, we created in [1].
Definition 1. A real number a is said to be a sub-limit of the sequence $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$, if there exists a subsequence $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$ of x with
limit a. The set of all sub-limits of x is denoted by $S(x)$ and the set of all limit points of $S(x)$ is denoted by $S^{\prime}(x)$.

Definition 2. Suppose $a \in S(x)$ for element $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$. A subsequence $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$ of x is called an essential subsequence of a if it converges to a, and for any subsequence $\left\{x\left(m_{t}\right)\right\}_{t=1}^{\infty}$ of x with limit a, except finite entries, all its entries are entries of $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$.

Definition 3. Let $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and let $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$ be a subsequence of x. Define

$$
w^{u}\left(\left\{x\left(n_{k}\right)\right\}\right)=\limsup _{n \rightarrow \infty}\left(\sup _{i} \frac{A\left(\left\{k: i \leq n_{k} \leq i+n-1\right\}\right)}{n}\right)
$$

and

$$
w_{l}\left(\left\{x\left(n_{k}\right)\right\}\right)=\liminf _{n \rightarrow \infty}\left(\inf _{i} \frac{A\left(\left\{k: i \leq n_{k} \leq i+n-1\right\}\right)}{n}\right)
$$

where $A(E)$ is the number of elements of set $E . w^{u}\left(\left\{x\left(n_{k}\right)\right\}\right)$ and $w_{l}\left(\left\{x\left(n_{k}\right)\right\}\right)$ are called the upper weight and lower weight of the subsequence $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$, respectively. If $w^{u}\left(\left\{x\left(n_{k}\right)\right\}\right)=w_{l}\left(\left\{x\left(n_{k}\right)\right\}\right)$, then the subsequence $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$ is said to be weightable and the weight of $\left\{x\left(n_{k}\right)\right\}_{k=1}^{\infty}$ is denoted by $w\left(\left\{x\left(n_{k}\right)\right\}\right)$, and

$$
w\left(\left\{x\left(n_{k}\right)\right\}\right)=w^{u}\left(\left\{x\left(n_{k}\right)\right\}\right)=w_{l}\left(\left\{x\left(n_{k}\right)\right\}\right) .
$$

We verified [1, Theorem 1] that all essential subsequences of a, $a \in S(x)$, have the same upper weight and lower weight, respectively. They are called the upper weight and lower weight of a, and denoted by $w^{u}(a)$ and $w_{l}(a)$, respectively. The weight of a is denoted by $w(a)$, if $w^{u}(a)=$ $w_{l}(a)$. We have the following main results.

Theorem 2 [1, Theorem 4]. Suppose $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and the set of all sub-limits of $x, S(x)=\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is finite, where $a_{i} \neq a_{j}$, if $i \neq j$. If $w\left(a_{t}\right)$ exists for each $t, 1 \leq t \leq m$, then x is almost convergent and for any Banach limit $L \in\left(l^{\infty}\right)^{*}$,

$$
L(x)=\sum_{t=1}^{m} a_{t} w\left(a_{t}\right)
$$

We see that for almost convergent sequence, the value of Banach limits only dependent on the sub-limit points and their weights. From Theorem 2, we obtain a familiar formula.

Corollary 1 [1, Corollary 2]. For a given positive integer m, let

$$
x=\left\{x_{1}(1), \ldots, x_{m}(1), x_{1}(2), \ldots, x_{m}(2), \ldots, x_{1}(n), \ldots, x_{m}(n), \ldots\right\}
$$

where for each $t, \lim _{n \rightarrow \infty} x_{t}(n)=a_{t}, 1 \leq t \leq m$. Then x is almost convergent and for any Banach limit $L \in\left(l^{\infty}\right)^{*}$,

$$
L(x)=\frac{a_{1}+a_{2}+\cdots+a_{m}}{m} .
$$

We actually proved a more general result as below.

Theorem 3 [1, Theorem 6]. Suppose $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ and $S(x)$ is infinite but countable and $S^{\prime}(x)$, the set of limit points of $S(x)$, is a nonempty finite set. If $w(a)$ exists for all $a \in S(x)$, then x is almost convergent and for any Banach limit $L \in\left(l^{\infty}\right)^{*}$,

$$
L(x)=\sum_{a \in S(x)} a w(a)
$$

Natural question can be asked that does there exist an almost convergent sequence $x \in l^{\infty}$ for which $S^{\prime}(x)$ is an infinite set? The answer is 'Yes'. We
proved more that $S^{\prime}(x)$ can be uncountable infinite in next Theorem 4 of this article.

We need some preliminary knowledge. Suppose m is a positive integer. We define $\varphi(m)$ to be the number of integers $k, 1 \leq k<m$ such that $(k, m)=1$, which denotes that k and m are relative primes. The function φ is called the Euler phi function [3, p. 54]. It is well known in number theory that if $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$, where the p 's are distinct primes and α_{i}, $1 \leq i \leq t$, are positive integers, then [3, p. 58, Theorem 2.7]

$$
\varphi(m)=\prod_{j=1}^{t}\left(p_{j}-1\right) p_{j}^{\alpha_{j}-1}
$$

We introduce the following lemmas that we were unable to find in the literatures.

Lemma 1. For any positive integer m,

$$
\frac{1}{m} \sum_{(k, m)=1,1 \leq k<m} k=\frac{1}{2} \varphi(m) .
$$

Proof. Suppose that $m=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}$. Note that there are $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}-1$ numbers containing the factor of p_{1} among the set of $\{1,2,3, \ldots, m-1\}$:

$$
p_{1}, 2 p_{1}, 3 p_{1}, \ldots,\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}-1\right) p_{1}
$$

there are $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1$ numbers containing the factor of p_{2} among the set of $\{1,2,3, \ldots, m-1\}$:

$$
p_{2}, 2 p_{2}, 3 p_{2}, \ldots,\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1\right) p_{2}
$$

\ldots, and there are $p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}-1}-1$ numbers containing the factor of p_{t} among the set of $\{1,2,3, \ldots, m-1\}$:

$$
p_{t}, 2 p_{t}, 3 p_{t}, \ldots,\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}-1}-1\right) p_{t} .
$$

The sums of these t groups are

$$
\begin{aligned}
& \frac{1}{2} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}-1\right)=\frac{1}{2} m\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}-1\right), \\
& \frac{1}{2} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1\right)=\frac{1}{2} m\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1\right), \\
& \frac{1}{2} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}-1}-1\right)=\frac{1}{2} m\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}-1}-1\right),
\end{aligned}
$$

respectively.
Similarly, there are $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1$ numbers containing the factor of $p_{1} p_{2}$ among the set of $\{1,2,3, \ldots, m-1\}$:

$$
p_{1} p_{2}, 2 p_{1} p_{2}, 3 p_{1} p_{2}, \ldots,\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1\right) p_{1} p_{2}
$$

\ldots, and there are $p_{1}^{\alpha_{1}} \cdots p_{t-1}^{\alpha_{t-1}-1} p_{t}^{\alpha_{t}-1}-1$ numbers containing the factor of $p_{t-1} p_{t}$ among the set of $\{1,2,3, \ldots, m-1\}$:

$$
p_{t-1} p_{t}, 2 p_{t-1} p_{t}, 3 p_{t-1} p_{t}, \ldots,\left(p^{\alpha_{1}} \cdots p_{t-1}^{\alpha_{t-1}} p_{t}^{\alpha_{t}}-1\right) p_{t-1} p_{t}
$$

The sums of these $\binom{t}{2}$ groups are
$\frac{1}{2} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1\right)=\frac{1}{2} m\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}}-1\right)$,
$\frac{1}{2} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}-1}-1\right)=\frac{1}{2} m\left(p_{1}^{\alpha_{1}} \cdots p_{t-1}^{\alpha_{t-1}-1} p_{t}^{\alpha_{t}-1}-1\right)$,
respectively, and so on.

Finally, there are $p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}-1}-1$ numbers containing the factor of $p_{1} p_{2} \cdots p_{t}$ among the set of $\{1,2,3, \ldots, m-1\}$:

$$
p_{1} p_{2} \cdots p_{t}, 2 p_{1} p_{2} \cdots p_{t}, \ldots,\left(p_{1}^{\alpha_{1}-1} p_{2}^{\alpha_{2}-1} \cdots p_{t}^{\alpha_{t}-1}-1\right) p_{1} p_{2} \cdots p_{t} .
$$

The sum of this group is

$$
\frac{1}{2} p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{t}^{\alpha_{t}}\left(p_{1}^{\alpha_{1}-1} \cdots p_{t}^{\alpha_{t}-1}-1\right)=\frac{1}{2} m\left(p_{1}^{\alpha_{1}-1} \cdots p_{t}^{\alpha_{t}-1}-1\right) .
$$

Thus,

$$
\begin{aligned}
& \sum_{(k, m)=1,1 \leq k<m} k \\
= & \frac{m}{2}(m-1)-\frac{m}{2} \sum_{j=1}^{t}\left(p_{j}^{\alpha_{j}-1} \prod_{i \neq j} p_{i}^{\alpha_{i}}-1\right) \\
& +\frac{m}{2} \sum_{1 \leq i<j \leq t}\left(p_{i}^{\alpha_{i}-1} p_{j}^{\alpha_{j}-1} \prod_{k \neq i, j} p_{k}^{\alpha_{k}}-1\right) \\
& +\cdots+(-1)^{t-1} \frac{m}{2} \sum_{j=1}^{t}\left(p_{j}^{\alpha_{j}} \prod_{i \neq j} p_{i}^{\alpha_{i}-1}-1\right)+(-1)^{t} \frac{m}{2}\left(\prod_{j=1}^{t} p_{j}^{\alpha_{j}-1}-1\right) \\
= & {\left[\left(\prod_{j=1}^{t} p_{j}^{\alpha_{j}}-1\right)-\sum_{j=1}^{t}\left(p_{j}^{\alpha_{j}-1} \prod_{i \neq j} p_{i}^{\alpha_{i}}-1\right)\right.} \\
& +\sum_{1 \leq i<j \leq t}\left(p_{i}^{\alpha_{i}-1} p_{j}^{\alpha_{j}-1} \prod_{k \neq i, j} p_{k}^{\alpha_{k}}-1\right) \\
& \left.+\cdots+(-1)^{t-1} \sum_{j=1}^{t}\left(p_{j}^{\alpha_{j}} \prod_{i \neq j} p_{i}^{\alpha_{i}-1}-1\right)+(-1)^{t}\left(\prod_{j=1}^{t} p_{j}^{\alpha_{j}-1}-1\right)\right]
\end{aligned}
$$

$$
\begin{aligned}
=\frac{m}{2} & {\left[\prod_{j=1}^{t} p_{j}^{\alpha_{j}}-\sum_{j=1}^{t} p_{j}^{\alpha_{j}-1} \prod_{i \neq j} p_{i}^{\alpha_{i}}\right.} \\
& +\sum_{1 \leq i<j \leq t} p_{i}^{\alpha_{i}-1} p_{j}^{\alpha_{j}-1} \prod_{k \neq i, j} p_{k}^{\alpha_{k}}+\cdots \\
& \left.+(-1)^{t-1} \sum_{j=1}^{t} p_{j}^{\alpha_{j}} \prod_{i \neq j} p_{i}^{\alpha_{i}-1}+(-1)^{t} \prod_{j=1}^{t} p_{j}^{\alpha_{j}-1}-(1-1)^{t}\right] \\
= & \frac{m}{2} \prod_{j=1}^{t} p_{j}^{\alpha_{j}-1}\left[\prod_{j=1}^{t} p_{j}-\sum_{j=1}^{t} \prod_{i \neq j} p_{i}\right.
\end{aligned}
$$

$$
\left.+\sum_{1 \leq i<j \leq t} \prod_{k \neq i, j} p_{k}+\cdots+(-1)^{t-1} \sum_{j=1}^{t} p_{j}+(-1)^{t}\right]
$$

$$
=\frac{m}{2} \prod_{j=1}^{t} p_{j}^{\alpha_{j}-1} \prod_{j=1}^{t}\left(p_{j}-1\right)=\frac{m}{2} \varphi(m) .
$$

Hence,

$$
\frac{1}{m} \sum_{(k, m)=1,1 \leq k<m} k=\frac{1}{2} \varphi(m)
$$

Lemma 2. Suppose that m and l are positive integers with $l>1$. Let $n=\sum_{j=m+1}^{m+l} \varphi(j)$. Then

$$
\lim _{l \rightarrow \infty} \frac{l}{n}=0 .
$$

Proof. We know that [3, p. 228, Theorem 6.21]

$$
\sum_{j=1}^{m} \varphi(j)=\frac{3 m^{2}}{\pi^{2}}+O(m \ln m)
$$

where $f=O(g)$ means that there exists a constant $c>0$ such that $|f(x)| \leq \operatorname{cg}(x)$ for all x in the intersection of domains of f and g. Thus,

$$
\begin{aligned}
n=\sum_{j=m+1}^{m+l} \varphi(j) & =\frac{3(m+l)^{2}-3 m^{2}}{\pi^{2}}+O((m+l) \ln (m+l))-O(m \ln m) \\
& =\frac{6 m l+3 l^{2}}{\pi^{2}}+O((m+l) \ln (m+l))-O(m \ln m),
\end{aligned}
$$

which implies $n=O\left(l^{2}\right)$. Hence

$$
\lim _{l \rightarrow \infty} \frac{l}{n}=0 .
$$

Now we back to our goal of the following result.
Theorem 4. Define an element of l^{∞} as follows:

$$
\begin{aligned}
r & :=\{r(j)\} \\
& =\left\{\begin{array}{rl}
\frac{1}{2} & , \underbrace{\frac{1}{3}, \frac{2}{3}}_{2}, \underbrace{\frac{1}{4}, \frac{3}{4}}_{\text {3rd block }}, \ldots, \underbrace{\frac{1}{m+1}}_{\text {3th block }}, \ldots, \frac{k}{m+1}, \ldots, \frac{m}{m+1}
\end{array}, \ldots\right\},
\end{aligned}
$$

where $(k, m+1)=1$. Then $S^{\prime}(r)=S(r)=[0,1]$ is an uncountable set, and r is an almost convergent sequence in l^{∞} and also $L(r)=1 / 2$ for any Banach limit $L \in\left(l^{\infty}\right)^{*}$.

Proof. It is well known that $S^{\prime}(r)=S(r)=[0,1]$. We just verify the remaining parts of the conclusion. For all positive integers i, there exists an integer m such that

$$
\sum_{j=2}^{m} \varphi(j) \leq i<\sum_{j=2}^{m+1} \varphi(j)
$$

Let $i=\sum_{j=2}^{m} \varphi(j)+q$, where $0 \leq q<\varphi(m+1)$. For any positive integers n and m, m is determined by i above, there is a positive integer l such that

$$
\sum_{j=2}^{m+l} \varphi(j) \leq i+n-1<\sum_{j=2}^{m+l+1} \varphi(j) .
$$

Let $i+n-1=\sum_{j=2}^{m+l} \varphi(j)+s$, where $0 \leq s<\varphi(m+l+1)$. Then

$$
\begin{aligned}
n & =\sum_{j=2}^{m+l} \varphi(j)+s-i+1 \\
& =\sum_{j=2}^{m+l} \varphi(j)+s-\left(\sum_{j=2}^{m} \varphi(j)+q\right)+1 \\
& =\sum_{j=m+1}^{m+l} \varphi(j)+s-q+1,
\end{aligned}
$$

from which we have

$$
\sum_{j=m+2}^{m+l} \varphi(j)=n-(\varphi(m+1)-q)-s-1
$$

With the help of Lemma 1 and the fact of $\varphi(m)<m$ for any m, we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \\
\geq & \frac{1}{n} \sum_{t=\sum_{j=2}^{m+1} \varphi(j)+1}^{\sum_{j=2}^{m+l} \varphi(j)} r(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n}\left[\frac{1}{m+2} \sum_{(k, m+2)=1,1 \leq k<m+2} k+\cdots+\frac{1}{k+l} \sum_{(k, m+l)=1,1 \leq k<m+l} k\right] \\
& =\frac{1}{n}\left[\frac{1}{2} \varphi(m+2)+\cdots+\frac{1}{2} \varphi(m+l)\right]=\frac{1}{2 n} \sum_{t=m+2}^{m+l} \varphi(t) \\
& =\frac{n-(\varphi(m+1)-q)-s-1}{2 n} \\
& \geq \frac{1}{2}-\frac{(\varphi(m+1)-q)+\varphi(m+l+1)+1}{2 n} \\
& \geq \frac{1}{2}-\frac{(m+1)+(m+l+1)+1}{2 n} \\
& =\frac{1}{2}-\frac{2 m+l+3}{2 n}=\frac{1}{2}-\frac{2 m+3}{2 n}-\frac{l}{2 n},
\end{aligned}
$$

which holds for any positive integers n and any fixed positive integer i. We know that m is fixed when i is fixed, so $\lim _{n \rightarrow \infty} \frac{2 m+3}{2 n}=0$. Note that l goes to infinity as n goes to infinity. By Lemma 2, we have

$$
\liminf _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)\right) \geq \liminf _{n \rightarrow \infty}\left(\frac{1}{2}-\frac{2 m+3}{2 n}-\frac{l}{2 n}\right)=\frac{1}{2}
$$

for all $i \in N$.
On the other hand, we have

$$
\begin{aligned}
& \frac{1}{n} \sum_{t=i}^{i+n-1} r(t) \\
& \leq \frac{1}{n} \sum_{t=\sum_{j=2}^{m} \varphi(j)+1}^{\sum_{j=2}^{m+l+1} \varphi(j)} r(t)
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{n}\left[\frac{1}{m+1} \sum_{(k, m+1)=1,1 \leq k<m+1} k+\cdots+\frac{1}{k+l+1} \sum_{(k, m+l+1)=1,1 \leq k<m+l+1} k\right] \\
& =\frac{1}{n}\left[\frac{1}{2} \varphi(m+1)+\cdots+\frac{1}{2} \varphi(m+l+1)\right] \\
& =\frac{1}{2 n} \sum_{t=m+1}^{m+l+1} \varphi(t)=\frac{n+\varphi(m+l+1)+q-s-1}{2 n} \\
& =\frac{1}{2}+\frac{(\varphi(m+l+1)-s)+q-1}{2 n} \\
& \leq \frac{1}{2}+\frac{m+l+1+m+1-1}{2 n}=\frac{1}{2}+\frac{2 m+1}{2 n}+\frac{l}{2 n}
\end{aligned}
$$

which holds for any positive integer n and any fixed positive integer i. We know that $\lim _{n \rightarrow \infty} \frac{2 m+1}{2 n}=0$. Using Lemma 2 again, we have

$$
\limsup _{n \rightarrow \infty}\left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)\right) \leq \limsup _{n \rightarrow \infty}\left(\frac{1}{2}+\frac{2 m+1}{2 n}+\frac{l}{2 n}\right)=\frac{1}{2}
$$

for all $i \in N$.
Summarizing the discussion above, we obtain that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=i}^{i+n-1} r(t)=\frac{1}{2}
$$

for all $i \in N$. Thus,

$$
\varliminf_{n \rightarrow \infty}\left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)\right)=\varlimsup_{n \rightarrow \infty}\left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)\right)=\frac{1}{2} .
$$

Using Lorentz's formula (6) [2, p.169], we have:

$$
\underline{\lim }_{n \rightarrow \infty}\left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)\right) \leq L(r) \leq \varlimsup_{n \rightarrow \infty}\left(\frac{1}{n} \sum_{t=i}^{i+n-1} r(t)\right)
$$

for all Banach limits $L \in\left(l^{\infty}\right)^{*}$. Hence, $L(r)=\frac{1}{2}$, for all $L \in\left(l^{\infty}\right)^{*}$ and r is an almost convergent sequence in l^{∞}.

From the argument of Theorem 4, we have a new corollary of Lorentz' theorem as follows:

Corollary 2. Suppose $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$. If the following limits exist with the same value l,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{t=i}^{i+n-1} x(t)=l
$$

for all positive integers $i \in N$, then x is an almost convergent sequence in l^{∞} and $L(x)=l$ for all Banach limits $L \in\left(l^{\infty}\right)^{*}$.

Notice. Corollary 2 is a complement of Theorem 6 in [1], which helps us in verifying and finding the value of Banach limits for an almost convergent sequence $x:=\{x(n)\}_{n=1}^{\infty} \in l^{\infty}$ with $S^{\prime}(x)$ as an uncountable set.

References

[1] B. Q. Feng and J. L. Li, Some estimations of Banach limits, J. Math. Anal. Appl. 323(1) (2006), 481-496.
[2] G. G. Lorentz, A contribution to the theory of divergent sequences, Acta Math. 80 (1948), 167-190.
[3] M. B. Nathanson, Elementary methods in number theory, Springer 195 GTM, 2000.
[4] L. Sucheston, Banach limits, Amer. Math. Monthly 74 (1967), 308-311.

