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ON DISTRIBUTION AND ALMOST CONVERGENCE OF

BOUNDED SEQUENCES

CHAO YOU AND BAO QI FENG

Abstract. In this paper, we give the concepts of properly distributed and
simply distributed sequences, and prove that they are almost convergent. Bas-
ing on these, we review the work of Feng and Li [Feng, B. Q. and Li, J. L.,
Some estimations of Banach limits, J. Math. Anal. Appl. 323(2006) No. 1,
481-496. MR2262220 46B45 (46A45).], which is shown to be a special case of
our generalized theory.

1. preliminary and background

Let l∞ be the Banach space of bounded sequences of real numbers x := {x(n)}∞n=1

with norm ‖x‖∞ = sup |x(n)|. As an application of Hahn-Banach theorem, a Ba-

nach limit L is a bounded linear functional on l∞, which satisfies the following
properties:

(a)If x := {x(n)}∞n=1 ∈ l∞ and x(n) ≥ 0, then L(x) ≥ 0;
(b)If x := {x(n)}∞n=1 ∈ l∞ and Tx = {x(2), x(3), . . .}, then L(x) = L(Tx), where

T is the translation operator ;
(c)L(1) = 1, where 1 := {1, 1, . . .};
(d)‖L‖ = 1;
(e)If x := {x(n)}∞n=1 ∈ c, then L(x) = limn→∞ x(n), where c is the Banach

subspace of l∞ consisting of convergent sequences.
Since the Hahn-Banach norm-preserving extension is not unique, there must be

many Banach limits in the dual space of l∞, and usually different Banach limits have
different values at the same element in l∞. However, there indeed exist sequences
whose values of all Banach limits are the same. Condition (e) is a trivial example.
Besides that, there also exist nonconvergent sequences satisfying this property, for
such examples please see [1] and [2]. In [3], G. G. Lorentz called a sequence x :=
{x(n)}∞n=1 almost convergent, if all Banach limits of x, L(x), are the same. In his
paper, Lorentz proved the following criterion for almost convergent sequences:

Theorem 1.1. A sequence x := {x(n)}∞n=1 ∈ l∞ is almost convergent if and only

if

lim
n→∞

1

n

i+n−1∑

t=i

x(t) = L(x)

uniformly in i.

There is no doubt that Lorentz’ theorem is a landmark in Banach limit theory,
which in theory points out all the almost convergent sequences. Recently, basing
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on Lorentz [3] and Sucheston [4], Feng B. Q. and Li J. L. gave another way [1] to
find the value of Banach limits of x, where x is an element of the space of almost
convergent sequences with some properties. In this paper, we will make a remark
on the concept of essential subsequence (Definition 2, [1]), then cite Theorem 4([1])
to develop our theory, and at last use our theory to review two main results in [1],
in the bid to include [1] into our framework and show that we have genuinely done
a work of generalization in theory. Thus, we’d better make a short introduction to
the main results of [1] first, making the notations and terminologies available.

Definition 1.2 (Definition 1, [1]). A real number a is said to be a sub-limit of the
sequence x := {x(n)}∞n=1 ∈ l∞, if there exists a subsequence {x(nk)}∞k=1 of x with
limit a. The set of all sub-limits of x is denoted by S(x) and the set of all limit
points of S(x) is denoted by S′(x).

Definition 1.3 (Definition 3, [1]). Let x := {x(n)}∞n=1 ∈ l∞, and let {x(nk)}∞k=1

be a subsequence of x. Define

wu({x(nk)}) = lim sup
n→∞

(

sup
i

A({k : i ≤ nk ≤ i+ n− 1})

n

)

and

wl({x(nk)}) = lim inf
n→∞

(

inf
i

A({k : i ≤ nk ≤ i + n− 1})

n

)

,

where A(E) is the cardinality of the set E. wu({x(nk)}) and wl({x(nk)}) are
called the upper and lower weights of the subsequence {x(nk)}∞k=1 respectively.
If wu({x(nk)}) = wl({x(nk)}), then the subsequence {x(nk)}∞k=1 is said to be
weightable and the weight of {x(nk)}

∞
k=1 is denoted by w({x(nk)}), and w({x(nk)}) =

wu({x(nk)}) = wl({x(nk)}).

Remark 1.4. It should be emphasized that our Definition 1.3 is slightly different
from Definition 3([1]), with limn→∞ there replaced by lim supn→∞ and lim infn→∞

for wu(·) and wl(·) respectively. Such expression is more accurate, since there is no
reason to guarantee the existence of limn→∞.

Definition 1.5 (Definition 2, [1]). Suppose a ∈ S(x) for some x := {x(n)}∞n=1 ∈
l∞. A subsequence {x(nk)}∞k=1 of x is called an essential subsequence of a if it
converges to a, and for any subsequence {x(mt)}∞t=1 of x with limit a, except finite
entries, all its entries are entries of {x(nk)}∞k=1.

Theorem 1.6 (Theorem 1, [1]). Let x := {x(n)}∞n=1 ∈ l∞. Suppose a ∈ S(x). Let

{x(nk)}∞k=1 and {x(mt)}∞t=1 be two essential subsequences of a. Then

wu({x(nk)}) = wu({x(mt)}) and wl({x(nk)}) = wl({x(mt)}).

Theorem 1.6 points out that, for a ∈ S(x), all essential subsequences of a have the
same upper weight and lower weight, respectively. They are called the upper and
lower weights of a in the sequence x, and denoted by wu(a) and wl(a), respectively.
The weight of a in the sequence x is denoted by w(a), if wu(a) = wl(a).

We remark that not every sub-limit a ∈ S(x) has an essential subsequence. The
following proposition shows that this happens only when a is an isolated sub-limit
of x. This is an important correction to [1], and consideration on this problem
directly leads to our present work.
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Proposition 1.7. 1 Let x := {x(n)}∞n=1 ∈ l∞ and suppose a ∈ S(x). a has an
essential subsequence if and only if a is an isolated sub-limit of x.

Proof. If a is an isolated sub-limit of x, then there exists ε0 > 0 such that (a−ε0, a+
ε0)

⋂
S(x) = {a}. Let {x(nk)} denote all the terms of x that lying in (a−ε0, a+ε0),

we will show that {x(nk)} is the desired essential subsequence of x. Since {x(nk)}
is infinite and bounded, it must have at least one convergent subsequence or sub-
limit. But a is an isolated sub-limit, hence {x(nk)} has just one sub-limit, i.e., a.
That’s to say {x(nk)} is convergent to a. For any subsequence {x(mt)} of x that
converging to a, from the definition of {x(nk)} and convergence of {x(mt)} to a,
all of the terms of this subsequence under consideration, except finite number of
them, must be in {x(nk)}. So {x(nk)} is an essential subsequence of a.

Conversely, suppose that a has an essential subsequence {x(nk)}. Assume a is
not an isolated sub-limit of sequence x, then there exist a sequence of sub-limits
{an} that converges to a. We know, for each an from {an}, there is a subsequence
{xi

n} that converges to an when i → ∞. Without loss of generality, we can assume
0 < dn = |a− an| < 1/n. Then, for each n, we can find yn from {xi

n} such that yn
doesn’t lie in {x(nk)} and |yn − an| < 1/n. Actually, this construction is possible.
Since a and an are distinct with distance dn, then we can find positive integer
N1 and N2 such that, when k > N1, i > N2, it holds that |x(nk) − a| < dn/3
and |xi

n − an| < dn/3, respectively. It is easy to see such yn can be found and
satisfying |yn − a| < dn < 1/n. Here we have constructed a subsequence {yn}
converging to a, but not lying in the essential subsequence {x(nk)}, which leads to
a contradiction. �

Remark 1.8. Since in [1] they just considered sequences with isolated sub-limits,
or a little complex case with only one limit point, this ambiguous treatment of
essential subsequences didn’t lead to serious mistakes.

The following theorem is the most important result of [1], which will be cited
and reviewed later.

Theorem 1.9 (Theorem 4, [1]). Suppose x := {x(n)}∞n=1 ∈ l∞ and

S(x) = {a1, a2, . . . , am} is a finite set, where ai 6= aj if i 6= j. Then
∑

0<aj∈S(x)

ajwl(aj) +
∑

0>aj∈S(x)

ajw
u(aj) ≤ L(x)

≤
∑

0<aj∈S(x)

ajw
u(aj) +

∑

0>aj∈S(x)

ajwl(aj).

If w(aj) exists for each j, then x is almost convergent and for any Banach limit L,
L(x) =

∑m
j=1 ajw(aj).

This form of L(x) =
∑m

j=1 ajw(aj) is much like the integration sum in mea-
sure and integration theory, so we ask the question whether the unique Banach
limit value of almost convergent sequence could be expressed as an integral form?
Previous work shows this is related to the distribution of values appearing in the
sequence. In [5], the concept of uniform distribution of sequences was introduced

1Special thanks goes to Prof. J. L. Li for discussion with him on this proposition. In fact, it
was him that first pointed out this proposition and provided a proof for the sufficient condition.
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as following: Suppose x ∈ l∞ is a [0, 1]-valued sequence, i.e. 0 ≤ x(n) ≤ 1 for each
n ∈ N. x is called uniformly distributed if for any [a, b) ⊆ [0, 1],

lim
N→∞

A({n ∈ N : x(n) ∈ [a, b), n ≤ N})

N
= b− a.

Now we want to generalize the concept of distribution to cover both the uniform
and ununiform cases.

2. main results

Definition 2.1. A sequence x := {x(n)}∞n=1 ∈ l∞ is called properly distributed if
for any Borel subset S of [−‖x‖∞, ‖x‖∞] it holds that

w(x, S) = lim inf
n→∞

A({k : x(k + i) ∈ S, k = 0, 1, . . . , n− 1})

n

= lim sup
n→∞

A({k : x(k + i) ∈ S, k = 0, 1, . . . , n− 1})

n

exists uniformly in i ∈ N and w(x, S) is called the weight of x with respect to S.

If we treat a properly distributed sequence x as a function defined on N, x is
analogous to the measurable function in real analysis, with w(x, S) corresponding
to some measure µ({n : x(n) ∈ S}) over N. Though w(x, S) indeed has some
similar behavior as a measure like nonnegativity and finite additivity, w(x, S) is
not a measure in general setting, for it fails to satisfy countable additivity. Here is
an illustrating example:

Example 2.2. Let s1 = {1, . . . , 1
︸ ︷︷ ︸

n−times

, 0, 0, . . .
︸ ︷︷ ︸

otherwise

}, which is obviously properly dis-

tributed. If there exists a measure µ over N such that µ({n : x(n) ∈ S}) =
w(x, S) for any properly distributed sequence x ∈ l∞ and Borel subset S, then
µ({1, 2, . . . , n}) = w(x, [1−ε, 1+ε)) = 0, where ε is a sufficiently small positive num-
ber. Similarly, it can further be implied that for any finite subset E of N it always
holds µ(E) = 0. Since µ is countably additive and N is the union of pairwise dis-
joint finite subsets, it follows that µ(N) = 0. However, if we set s2 = {1, . . . , 1, . . .},
then s2 is properly distributed and µ(N) = w(s2, [1− ε, 1 + ε)) = 1, which leads to
a contradiction. Thus, such measure µ over N doesn’t exist.

From Example 2.2, you may have already realized that s1 and s2 represent a
simple but useful class of properly distributed sequences. Hence, we naturally give
the following definition of simply distributed sequences, which would play the similar
role as “simple functions” in real analysis.

Definition 2.3. A sequence s := {s(n)}∞n=1 ∈ l∞ is called simply distributed if s
is finitely-valued with range {a1, . . . , am} and it holds that

w(s, aj) = lim inf
n→∞

A({k : s(k + i) = aj , k =, 0, 1, . . . , n− 1})

n

= lim sup
n→∞

A({k : s(k + i) = aj , k = 0, 1, . . . , n− 1})

n

exists uniformly in i ∈ N for j = 1, . . . ,m and w(s, aj) is called the weight of s with
respect to aj .
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Though we cannot bring our work into the framework of measure and integra-
tion(In fact, we really tried to do so at the beginning of our research.), we still find
much common feature between them, which suggests us to generalize the measure-
integration procedure in real analysis to obtain a formal integral to express the
unique Banach limit of almost convergent sequence. This would partially answer
the open question of [2].

Theorem 2.4. If s ∈ l∞ is a simply distributed sequence with finite range {a1, . . . , am},
then it is almost convergent with the unique Banach limit L(s) =

∑m
j=1 ajw(s, aj).

Proof. Let S(s) denote the set of all sub-limits of s. Since s is finitely-valued, we
have S(s) ⊆ {a1, . . . , am} is finite. Moreover, if aj /∈ S(s), then aj must appear
finite times in s with w(s, aj) = 0. Hence, by Theorem 4 of [1], it implies that s is
almost convergent and for any Banach limit L, L(s) =

∑m
j=1 ajw(s, aj). �

From Theorem 2.4, we can see that for any simply distributed sequence s, its
unique Banach limit could be expressed as formal integral L(s) =

∑m
j=1 ajw(s, aj).

Then it naturally arises the question that whether it is still true for general properly
distributed sequences. To this end, we’d like to generalize the procedure of integra-
tion in real analysis. Firstly, let us approximate properly distributed sequences by
simply distributed sequences.

Lemma 2.5. For any properly distributed element x ∈ l∞, there is a sequence of

simply distributed elements {sk}∞k=1 ⊆ l∞ such that limk→∞ sk = x under the norm

‖ · ‖∞ in l∞.

Proof. For k ∈ N, there is a partition

Tk : −‖x‖∞ = a0 < . . . < amk
= ‖x‖∞

of [−‖x‖∞, ‖x‖∞] such that ‖Tk‖ < 1/k. Define

sk(n) =







a0, if a0 ≤ x(n) < a1,

· · · · · · ,

amk−1, if amk−1 ≤ x(n) < amk
.

n = 1, 2, 3, . . .

Since x is properly distributed, it follows easily that each sk is simply distributed.
According to the above construction, it is obvious that ‖sk − x‖∞ < 1/k. Thus
limk→∞ sk = x. �

Theorem 2.6. If x ∈ l∞ is any properly distributed sequence, then x is almost

convergent. And if {sk}∞k=1 is any sequence of simply distributed sequences con-

vergent to x under the ‖ · ‖∞ norm, for any Banach limit L, it always holds that

limk→∞ L(sk) = L(x).

Proof. For any Banach limit L, since L is a bounded linear functional on l∞ and
limk→∞ sk = x, it follows that limk→∞ L(sk) = L(x). By Theorem 2.4, the value
of each L(sk) is independent of L, thus so is L(x). We conclude that x is almost
convergent and the unique Banach limit is limk→∞ L(sk). �

Now we want to use the new theory to review the work of [1], which will be
shown to be a special case in our framework.
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Lemma 2.7. Let x := {x(n)}∞n=1 ∈ l∞. Suppose a is an isolated sub-limit of x,
and there exists ε0 > 0 such that (a − ε0, a + ε0)

⋂
S(x) = {a}. Then for any

0 < ε ≤ ε0, w(x, [a − ε, a + ε)) exists if and only if w(a) does. Moreover, if they

both exist, they are equal.

Proof. Like Proposition 1.7, for any 0 < ε ≤ ε0, let {x(nk)} denote all the terms of
x that lying in [a− ε, a+ ε). Then, similarly, it is easy to show that {x(nk)} is an
essential subsequence of a. And, for any n, i ∈ N, we have

A({j : a− ε ≤ x(i + j) < a+ ε, j = 0, 1, . . . , n− 1})

n

=
A({k : i ≤ nk ≤ i+ n− 1})

n
.

Consequently,

lim sup
n→∞

A({j : a− ε ≤ x(i + j) < a+ ε, j = 0, 1, . . . , n− 1})

n

= lim sup
n→∞

A({k : i ≤ nk ≤ i+ n− 1})

n
,

and

lim inf
n→∞

A({j : a− ε ≤ x(i + j) < a+ ε, j = 0, 1, . . . , n− 1})

n

= lim inf
n→∞

A({k : i ≤ nk ≤ i+ n− 1})

n
.

Now it is clear that w(x, [a− ε, a+ ε)) exists if and only if w(a) does. And, if they
both exist, they are equal. �

Now it’s time to include Theorem 4([1]) into our framework.

Theorem 2.8. Suppose x := {x(n)}∞n=1 ∈ l∞ and S(x) = {a1, a2, . . . , am} is a

finite set, where ai 6= aj if i 6= j. If w(aj) exists for each j, then x is properly

distributed.

Proof. For any interval [c, d), if [c, d)
⋂
{a1, a2, . . . , am} = ∅, there would be at most

finite terms in [c, d), so

w(x, [c, d)) = lim inf
n→∞

A({k : x(k + i) ∈ [c, d), k = 0, 1, . . . , n− 1})

n

= lim sup
n→∞

A({k : x(k + i) ∈ [c, d), k = 0, 1, . . . , n− 1})

n

= 0

exists uniformly in i ∈ N. Otherwise, there are some ajs in [c, d). Without loss of
generality, we can assume only aj lying [c, d). In fact, if there are more than one
such aj , we can decompose [c, d) into disjoint subintervals such that each contains
only one aj . From Lemma 2.7, since w(aj) exists, we also have w(x, [c, d)) exists,
and w(x, [c, d)) = w(aj). Thus we have proved that x is properly distributed. �

Moreover, we can reobtain the unique Banach limit of x above, using the ap-
proximation method by simply distributed sequences.
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Corollary 2.9. Suppose x := {x(n)}∞n=1 ∈ l∞ and S(x) = {a1, a2, . . . , am} is a
finite set, where ai 6= aj if i 6= j. If w(aj) exists for each j, then x is almost
convergent, with the unique Banach limit L(x) =

∑m
j=1 ajw(aj) for any Banach

limit L.

Proof. For any sufficiently big k ∈ N, define

sk(n) =

{

aj , if aj − 1/k ≤ x(n) < aj + 1/k,

x(n), otherwise.
j = 1, . . . ,m;n ∈ N.

It is easy to see that each sk is a simply distributed sequence with only w(sk, aj) 6=
0, and L(sk) =

∑m
j=1 ajw(sk, [aj − 1/k, aj + 1/k)) =

∑m
j=1 ajw(aj). From the

construction of {sk}∞k=1, limk→∞ sk = x under the ‖ · ‖∞ norm. Then it follows
that L(x) = limk→∞ L(sk) =

∑m
j=1 ajw(aj). �

In Theorem 5 and 6 of [1], sequences whose sub-limit sets have limit points are
considered. In order to keep the form L(x) =

∑

a∈S(x) aw(a), the authors made

a great effort to give a complex definition for the weight of limit points of S(x).
Now, from our distribution viewpoint, it is very easy to understand those complex
formulae. Let us take Theorem 5 [1] for example, Theorem 6 [1] is treated in a
similar way locally at each limit point of S(x).

Theorem 2.10. Suppose x := {x(n)}∞n=1 ∈ l∞ and S(x) is infinite but countable

and has a unique limit point p, that is S′(x) = {p}. If, furthermore, w(a) exists for
all a ∈ S(x) and a 6= p, then x is properly distributed, and for any Banach limit L,
L(x) =

∑

a∈S(x) aw(a), where w(p) = 1−
∑

p6=a∈S(x)w(a).

Proof. For any sufficiently big k ∈ N, define

sk(n) =







p, if p− 1/k ≤ x(n) ≤ p+ 1/k,

aj, if aj − 1/k ≤ x(n) < aj + 1/k, and aj /∈ [p− 1/k, p+ 1/k),

x(n), otherwise.

Since there are only finite aj /∈ [p− 1/k, p+1/k), each sk is properly distributed
and limk→∞ sk = x. Moreover, from Lemma 2.7, we have

L(sk) =
∑

aj /∈[p−1/k,p+1/k)

ajw(aj) + p(1−
∑

aj /∈[p−1/k,p+1/k)

w(aj)).

Let k → ∞, it follows that L(x) = limk→∞ L(sk) =
∑

a∈S(x) aw(a), where w(p) =

1−
∑

p6=a∈S(x) w(a). �
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