Definitions:

- **One-to-one function:** is a function in which no two elements of the domain \(A \) have the same image. In other words, \(f \) is a one-to-one function if \(f(x_1) = f(x_2) \) implies \(x_1 = x_2 \).

- **Inverse function:** Let \(f \) be a one-to-one function with domain \(A \) and range \(B \). Then its inverse function, denoted \(f^{-1} \), has domain \(B \) and range \(A \) and is defined by

\[
f^{-1}(y) = x \quad \text{if and only if} \quad f(x) = y
\]
for any \(y \) in \(B \).

Finding the inverse of a one-to-one function:

1. Replace \(f(x) \) with \(y \).
2. Interchange \(x \) and \(y \).
3. Solve this equation for \(y \). The resulting equation is \(f^{-1}(x) \).

Important Properties:

- **Horizontal line test:** A function is one-to-one if no horizontal line intersects its graph more than once.

- **Property of inverse functions:** Let \(f \) be a one-to-one function with domain \(A \) and range \(B \). The inverse function \(f^{-1} \) satisfies

\[
f^{-1}(f(x)) = x \quad \text{for every} \quad x \in A
\]

\[
\text{and} \quad f(f^{-1}(x)) = x \quad \text{for every} \quad x \in B
\]

- The inverse of \(f^{-1} \) is \(f \). So, we say that \(f \) and \(f^{-1} \) are inverses of each other.

- The inverse function interchanges the domain and range. Namely,

\[
\text{Domain of } f = \text{Range of } f^{-1}
\]

\[
\text{Range of } f = \text{Domain of } f^{-1}
\]

- The graph of \(f^{-1} \) is found by reflecting the graph of \(f \) across the line \(y = x \).

- Only a one-to-one function can have an inverse.

Common Mistakes to Avoid:

- The \(-1\) in the inverse \(f^{-1} \) is NOT an exponent. Be aware that

\[
f^{-1}(x) \neq \frac{1}{f(x)}.
\]

- In order for \(f \) to be a one-to-one function it must first be a function. Therefore, in order for \(f \) to be a one-to-one function it must pass both the vertical and horizontal line tests.
PROBLEMS

1. Determine whether each function is a one-to-one function. (Remember \(f \) is one-to-one if \(f(x_1) = f(x_2) \) implies that \(x_1 = x_2 \).)

 (a) \(f(x) = 8x - 3 \)

 \[f(x_1) = f(x_2) \]
 \[8x_1 - 3 = 8x_2 - 3 \]
 \[8x_1 = 8x_2 \]
 \[x_1 = x_2 \]

 \[f \text{ is a one-to-one function} \]

 (b) \(f(x) = x^4 + 7 \)

 \[f(x_1) = f(x_2) \]
 \[x_1^4 + 7 = x_2^4 + 7 \]
 \[x_1^4 = x_2^4 \]
 \[\sqrt[4]{x_1^4} = \sqrt[4]{x_2^4} \]
 \[x_1 = \pm x_2 \]

 \[f \text{ is NOT a one-to-one function} \]

2. If \(f \) is a one-to-one function for which \(f(1) = 7 \), \(f(-3) = 9 \) and \(f(6) = 2 \) find \(f^{-1}(9) \), \(f^{-1}(7) \) and \(f^{-1}(2) \).

 Since \(f \) is a one-to-one function we know that it has an inverse. Remember that the inverse interchanges the \(x \) and \(y \) variable. Therefore,

 \[f^{-1}(9) = -3, \quad f^{-1}(7) = 1, \quad f^{-1}(2) = 6 \]

3. Find the inverse of \(f \).

 (a) \(f(x) = 3x - 5 \)

 \[f(x) = 3x - 5 \]
 \[y = 3x - 5 \]
 \[x = 3y - 5 \]
 \[x + 5 = 3y \]
 \[\frac{x + 5}{3} = y \]

 \[f^{-1}(x) = \frac{x + 5}{3} \]

 (b) \(f(x) = 9 - 4x \)

 \[f(x) = 9 - 4x \]
 \[y = 9 - 4x \]
 \[x = 9 - 4y \]
 \[4y = 9 - x \]
 \[y = \frac{9 - x}{4} \]

 \[f^{-1}(x) = \frac{9 - x}{4} \]

 (c) \(f(x) = \frac{x - 2}{6} \)

 \[f(x) = \frac{x - 2}{6} \]
 \[y = \frac{x - 2}{6} \]
 \[x = \frac{y - 2}{6} \]
 \[6x = y - 2 \]
 \[6x + 2 = y \]

 \[f^{-1}(x) = 6x + 2 \]
(d) \(f(x) = \frac{2}{x - 4} \)

\[
\begin{align*}
 f(x) &= \frac{2}{x - 4} \\
 y &= \frac{2}{x - 4} \\
 x &= \frac{2}{y - 4} \\
 x(y - 4) &= 2 \\
 xy - 4x &= 2 \\
 xy &= 4x + 2 \\
 y &= \frac{4x + 2}{x} \\
 f^{-1}(x) &= \frac{4x + 2}{x}
\end{align*}
\]

Note that with the restriction \(x \leq 0 \), the function \(f(x) = x^2 \) becomes a one-to-one function.

\[
\begin{align*}
 f(x) &= x^2 \\
 y &= x^2 \\
 x &= y^2 \\
 \sqrt{x} &= \sqrt{y^2} \\
 \pm \sqrt{x} &= y
\end{align*}
\]

Now we need to decide whether our answer is \(\sqrt{x} \) or \(-\sqrt{x}\). Remember that the range of \(f^{-1} \) is the domain of \(f \). Since the domain of \(f \) is \(x \leq 0 \) (negative numbers and zero), we need to choose \(-\sqrt{x}\).

\[
\begin{align*}
 f^{-1}(x) &= -\sqrt{x}
\end{align*}
\]

(g) \(f(x) = \sqrt{4x - 7} \)

\[
\begin{align*}
 f(x) &= \sqrt{4x - 7} \\
 y &= \sqrt{4x - 7} \\
 x &= \sqrt{4y - 7} \\
 x^2 &= (\sqrt{4y - 7})^2 \\
 x^2 &= 4y - 7 \\
 x^2 + 7 &= 4y \\
 \frac{x^2 + 7}{4} &= y
\end{align*}
\]

\[
\begin{align*}
 f^{-1}(x) &= \frac{x^2 + 7}{4}, \quad x \geq 0
\end{align*}
\]
4. Given the graph of f, sketch the graph of f^{-1}.

To do this remember that the graph of f^{-1} is the reflection of f across the line $y = x$. Also, f^{-1} interchanges the x and y variables. Therefore, we will interchange the x– and y–coordinates of each ordered pair. Once we graph these we will connect them with straight lines.