Definition:

- **Composition function**: Given two functions \(f \) and \(g \), the composition function \(f \circ g \) is defined by

\[
(f \circ g)(x) = f(g(x)).
\]

In other words, given a number \(x \), we first apply \(g \) to it and then we apply \(f \) to the result. Here, \(f \) is the outside function and \(g \) is the inside function.

Important Properties:

- Let \(c \) be any constant. There are two ways to find \((f \circ g)(c)\). You could first evaluate \(g(c) \) and then evaluate \(f \) at the result. Or you could first find \((f \circ g)(x)\) and then evaluate the resulting function at \(c \).
- To find \((f \circ g)(x)\), remember to substitute the value \(g(x) \) into every variable that occurs in \(f \).
- The order of the functions is important. In general,

\[
(f \circ g)(x) \neq (g \circ f)(x).
\]

- Other composition functions are defined similarly. Namely,

\[
\begin{align*}
(g \circ f)(x) &= g(f(x)) \\
(f \circ f)(x) &= f(f(x)) \\
(g \circ g)(x) &= g(g(x))
\end{align*}
\]

Common Mistakes to Avoid:

- Composition of functions is different than the multiplication of functions. Therefore,

\[
(f \circ g)(x) \neq f(x) \cdot g(x).
\]
PROBLEMS

1. If \(f(x) = 3x - 5 \) and \(g(x) = x + 2 \) find \((f \circ g)(x)\) and \((g \circ f)(x)\).

To find \((f \circ g)(x)\) we will substitute \(g \) in for every variable that occurs in \(f \).

\[
(f \circ g)(x) = f(g(x)) \\
= f(x + 2) \\
= 3(x + 2) - 5 \\
= 3x + 6 - 5 \\
= 3x + 1
\]

To find \((g \circ f)(x)\) we will substitute \(f \) into every variable that occurs in \(g \).

\[
(g \circ f)(x) = g(f(x)) \\
= g(3x - 5) \\
= (3x - 5) + 2 \\
= 3x - 3
\]

\[
(f \circ g)(x) = 3x + 1 \\
(g \circ f)(x) = 3x - 3
\]

2. Given \(f(x) = x^2 - 5x + 1 \) and \(g(x) = 2x + 1 \), find \((f \circ g)(x)\) and \((g \circ f)(x)\).

To find \((f \circ g)(x)\) we will substitute \(g \) in for every variable that occurs in \(f \).

\[
(f \circ g)(x) = f(g(x)) \\
= f(2x + 1) \\
= (2x + 1)^2 - 5(2x + 1) + 1 \\
= 4x^2 + 4x + 1 - 10x - 5 + 1 \\
= 4x^2 - 6x - 3
\]

To find \((g \circ f)(x)\) we will substitute \(f \) into every variable that occurs in \(g \).

\[
(g \circ f)(x) = g(f(x)) \\
= g(x^2 - 5x + 1) \\
= 2(x^2 - 5x + 1) + 1 \\
= 2x^2 - 10x + 2 + 1 \\
= 2x^2 - 10x + 3
\]

\[
(f \circ g)(x) = 4x^2 - 6x - 3 \\
(g \circ f)(x) = 2x^2 - 10x + 3
\]
3. Given \(f(x) = 3x^2 + 2x - 5 \) and \(g(x) = 2x - 3 \), find \((f \circ g)(x)\) and \((g \circ f)(x)\).

To find \((f \circ g)(x)\) we will substitute \(g\) in for every variable that occurs in \(f\).

\[
(f \circ g)(x) = f(g(x))
= f(2x - 3)
= 3(2x - 3)^2 + 2(2x - 3) - 5
= 3(4x^2 - 12x + 9) + 4x - 6 - 5
= 12x^2 - 36x + 27 + 4x - 6 - 5
= 12x^2 - 32x + 16
\]

To find \((g \circ f)(x)\) we will substitute \(f\) into every variable that occurs in \(g\).

\[
(g \circ f)(x) = g(f(x))
= g(3x^2 + 2x - 5)
= 2(3x^2 + 2x - 5) - 3
= 6x^2 + 4x - 10 - 3
= 6x^2 + 4x - 13
\]

\[
(f \circ g)(x) = 12x^2 - 32x + 16
\]

\[
(g \circ f)(x) = 6x^2 + 4x - 13
\]

4. Given \(f(x) = 2x^2 - 4x \) and \(g(x) = x^2 + 1 \), find \((f \circ g)(x)\) and \((g \circ f)(x)\).

To find \((f \circ g)(x)\) we will substitute \(g\) in for every variable that occurs in \(f\).

\[
(f \circ g)(x) = f(g(x))
= f(x^2 + 1)
= 2(x^2 + 1)^2 - 4(x^2 + 1)
= 2x^4 + 2x^2 + 1 - 4x^2 - 4
= 2x^4 + 4x^2 + 2 - 4x^2 - 4
= 2x^4 - 2
\]

To find \((g \circ f)(x)\) we will substitute \(f\) into every variable that occurs in \(g\).

\[
(g \circ f)(x) = g(f(x))
= g(2x^2 - 4x)
= (2x^2 - 4x)^2 + 1
= 4x^4 - 16x^3 + 16x^2 + 1
\]

\[
(f \circ g)(x) = 2x^4 - 2
\]

\[
(g \circ f)(x) = 4x^4 - 16x^3 + 16x^2 + 1
\]
5. **Given** \(f(x) = \frac{x}{x+1} \) and \(g(x) = 9x - 3 \), find \((f \circ g)(x)\) and \((g \circ f)(x)\).

To find \((f \circ g)(x)\) we will substitute \(g(x) = 9x - 3\) in for every variable that occurs in \(f\).

\[
(f \circ g)(x) = f(g(x)) = f(9x - 3) = \frac{9x - 3}{9x - 3 + 1} = \frac{9x - 3}{9x - 2}
\]

To find \((g \circ f)(x)\) we will substitute \(f(x) = \frac{x}{x+1}\) into every variable that occurs in \(g\).

\[
(g \circ f)(x) = g(f(x)) = g\left(\frac{x}{x+1}\right) = 9\left(\frac{x}{x+1}\right) - 3 = \frac{9x}{x+1} - 3 = \frac{9x - 3(x + 1)}{x+1} = \frac{9x - 3x - 3}{x + 1} = \frac{6x - 3}{x + 1}
\]

\[
(f \circ g)(x) = \frac{9x - 3}{9x - 2} \\
(g \circ f)(x) = \frac{6x - 3}{x + 1}
\]
6. **Given** \(f(x) = 6x - 7 \) and \(g(x) = x^2 + 3x + 5 \), find

(a) \((g \circ f)(-1)\)

We know that \((g \circ f)(-1) = g(f(-1))\). Therefore, we will first find \(f(-1)\).

\[
f(-1) = 6(-1) - 7
= -6 - 7
= -13.
\]

Now, we will substitute \(-13\) into every variable that occurs in \(g\).

\[
g(f(-1)) = g(-13)
= (-13)^2 + 3(-13) + 5
= 169 - 39 + 5
= 135
\]

\[
(g \circ f)(-1) = 135
\]

(b) \((f \circ f)(2)\)

We know that \((f \circ f)(2) = f(f(2))\). Hence, we first will find \(f(2)\).

\[
f(2) = 6(2) - 7
= 12 - 7
= 5.
\]

Now, we will substitute \(5\) into every variable that occurs in \(f\).

\[
(f \circ f)(2) = f(f(2))
= f(5)
= 6(5) - 7
= 30 - 7
= 23.
\]

\[
(f \circ f)(2) = 23
\]
(c) \((g \circ g)(0)\)

We know that \((g \circ g)(0) = g(g(0))\). So, we first need to find \(g(0)\).

\[
g(0) = 0^2 + 3(0) + 5
= 5
\]

Now, we will substitute 5 into every variable that occurs in \(g\).

\[
(g \circ g)(0) = g(g(0))
= g(5)
= 5^2 + 3(5) + 5
= 25 + 15 + 5
= 45.
\]

\((g \circ g)(0) = 45 \)

7. Express the function in the form \(f \circ g\).

(a) \(F(x) = \sqrt{x - 7}\)

Because we are looking for the form \(f \circ g\), we know that \(f\) is the outside function and \(g\) is the inside function. Therefore, one answer is

\[
f(x) = \sqrt{x}, \quad g(x) = x - 7
\]

(b) \(F(x) = \frac{3}{x - 5}\)

Once again, \(f\) is the outside function and \(g\) is the inside function. Therefore, one answer is

\[
f(x) = \frac{3}{x}, \quad g(x) = x - 5
\]